


MEGAFIL® Seamless
Flux- and Metal-cored
Welding Wires











## ITW Welding -Your Route to Full Performance in Welding

We are passionate about welding and this is reflected by our unique offering to the market. When you use Hobart's best in class welding consumables or Miller's welding equipment, you will enjoy the most advanced and productive products.

Hobart is a recognized leader in the development of filler metal technologies and has the expertise to address the toughest welding challenges. Under this brand, we have been bringing together a wealth of welding expertise and consumables with unequalled welding performance since 1917.

Special wires have been developed to meet specific requirements of demanding industries, such as offshore, oil & gas and pipe mills. Hobart MIG/MAG welding consumables are manufactured using state-of-the-art production technology. They carry the name MEGAFIL® for the advanced range of low-hydrogen cored wires.

MEGAFIL® seamless flux and metal cored products are brought to the market supported by a dedicated team of specialists, capable of providing integrated welding solutions. Partnering with ITW Welding, you will have the deep knowledge and experience of our engineers at your side, along with fully equipped laboratories for sound application research.

ITW Welding is a total solution provider for welding processes, including welding heads, torches, tractors, orbital welding equipment, column & booms, ceramic backings, flux drying, handling equipment and preheating equipment. The offer includes engineering and automation and turnkey solutions, making us the ideal partner for one-stop shopping.

Contact us and discover ways to optimize your existing processes to their full potential.

MEGAFIL® – A PRODUCT OF HOBART – WELCOMES YOUR CHALLENGES

2nd Edition

## **Table of Contents**

| MEGAFIL® quick selection guide                                                                 | 4     |
|------------------------------------------------------------------------------------------------|-------|
| MEGAFIL® seamless cored wires production technology                                            | 9     |
| MEGAFIL® characteristics and advantages                                                        | 10    |
| Product overview MEGAFIL® seamless cored wires                                                 | 11-13 |
| Storage and handling recommendations                                                           | 14    |
| Packaging                                                                                      | 15    |
| Packing information                                                                            | 16    |
| Approval certificates                                                                          | 93-94 |
| Conversion Charts                                                                              | 95    |
|                                                                                                |       |
| Joint Welding                                                                                  | 40.54 |
| MEGAFIL® product data sheets                                                                   |       |
| - Torch angle and handling                                                                     |       |
| Use of ceramic backing material                                                                |       |
| - Deposition rate flux- and metal-cored wires                                                  |       |
| - Welding costs                                                                                | 56    |
| MEGAFIL® welding parameters - guidance values: metal-cored wires                               | 57-59 |
| MEGAFIL® welding parameters - guidance values: rutile flux-cored wires                         | 60-62 |
| MEGAFIL® welding parameters - guidance values: basic flux-cored wires                          | 63-64 |
| EN ISO 17632-A: Tubular cored electrodes for gas shielded and non-gas shielded metal           |       |
| arc welding of non-alloy and fine grain steels                                                 | 65    |
|                                                                                                | 00    |
| EN ISO 18276-A: Tubular cored electrodes for gas shielded and non-gas shielded metal           |       |
| arc welding of high strength steels                                                            | 66    |
| EN ISO 17634-A: Tubular cored electrodes for gas shielded metal arc welding                    |       |
| of creep-resisting steels                                                                      | 67    |
| AWS A5.18: Specification for carbon steel electrodes and rods for                              |       |
| gas shielded arc welding                                                                       | 68    |
|                                                                                                |       |
| AWS A5.20: Specification for carbon steel electrodes for flux cored arc welding                | 69    |
| AWS A5.28: Specification for low-alloy steel electrodes and rods for gas shielded arc welding  | g 70  |
| AWS A5.29: Specification for low-alloy steel elctrodes for flux cored arc welding              | 71    |
| AWS A5.36: Specification for carbon and low-alloy steel flux cored electrodes for flux cored a | irc   |
| welding and metal cored electrodes for gas metal arc welding                                   |       |
| welding and metal cored electrodes for gas metal are welding                                   | 12    |
| Hardfacing                                                                                     |       |
| MEGAFIL® product data sheets                                                                   | 74-83 |
| - What is meant by the term "build-up welding"?                                                | 84    |
| - Surfacing when and where?                                                                    | 84    |
| - What does "wear" mean?                                                                       | 85    |
| - Practical example of TRIBO-systems                                                           | 86-87 |
| - Selection criteria                                                                           | 88    |
| MEGAFIL® welding parameter - guidance values: metal-cored wires                                | 80    |
| MEGAFIL® welding parameter - guidance values: basic flux-cored wires                           |       |
| MEGAFIL® welding parameter - guidance values: 8 series metal-cored wires                       |       |
|                                                                                                |       |
| EN 14700: Welding consumables for hardfacing                                                   | 92    |

**Disclaimer:** The information contained herein is furnished for reference purposes only and is believed to be accurate and reliable. Typical data are those obtained when welding and testing are performed in accordance with prescribed standards and guidelines. Other tests may produce different results and typical data should not be assumed to yield similar results in a particular application or weldment. ITW Welding does not assume responsibility for any results obtained by persons over whose methods it has no control. It is the user's responsibility to determine the suitability of any products or methods mentioned herein for a particular purpose. In light of the foregoing, ITW Welding specifically disclaims all warranties, express or implied, including warranties of merchantability and fitness for a particular purpose, and further disclaims any liability for consequential or incidental damages of any kind, including lost profits.

## **MEGAFIL®** Quick Selection Guide

| Product         | Features                                                                                                                                                                                                                 | Page |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Non-alloy and f | ine grain steels                                                                                                                                                                                                         |      |
| MEGAFIL® 710 M  | Metal-cored wire for non-alloyed steels < 460 MPa yield strength.                                                                                                                                                        | 18   |
|                 | Suitable for robot applications. Ideal for use in short arc and spray arc.                                                                                                                                               |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide $(CO_2)$ and 100% Carbon Dioxide $(CO_2)$ .                                                                                                                       |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas. CTOD tested -20° C.                                                                                                                                 |      |
| MEGAFIL® 240 M  | Metal-cored wire with < 1.0% Ni for non-alloyed steels < 500 MPa yield strength.                                                                                                                                         | 19   |
|                 | Suitable for robot applications. Ideal for use in short arc and spray arc.                                                                                                                                               |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ) and 100% Carbon Dioxide (CO <sub>2</sub> ).                                                                                                    |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas. CTOD tested -20° C.                                                                                                                                 |      |
| MEGAFIL® 713 R  | Micro-alloyed rutile flux-cored wire for non-alloyed steels < 460 MPa yield strength.                                                                                                                                    | 20   |
|                 | Rapidly solidifying slag for higher deposition rate in all position welding.                                                                                                                                             |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ) and 100% Carbon Dioxide (CO <sub>2</sub> ).                                                                                                    |      |
| MEGAFIL® 716 R  | Micro-alloyed rutile flux-cored wire for non-alloyed steels < 460 MPa yield strength.                                                                                                                                    | 21   |
|                 | Rapidly solidifying slag for higher deposition rate in all position welding.                                                                                                                                             |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ) and 100% Carbon Dioxide (CO <sub>2</sub> ).                                                                                                    |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas, as welded and stress                                                                                                                                |      |
|                 | relief annealed. CTOD tested -20° C.                                                                                                                                                                                     |      |
| MEGAFIL® 821 R  | Micro-alloyed rutile flux-cored wire with < 1.0% Ni for non-alloyed steels < 500 MPa yield strength.                                                                                                                     | 22   |
|                 | Rapidly solidifying slag for higher deposition rate in all position welding.                                                                                                                                             |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide ( $\mathrm{CO}_2$ ).                                                                                                                                              |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas, as welded and stress                                                                                                                                |      |
|                 | relief annealed. CTOD tested -20° C.                                                                                                                                                                                     |      |
| MEGAFIL® 822 R  | Micro-alloyed rutile flux-cored wire with < 1.0% Ni for non-alloyed steels < 500 MPa yield strength.                                                                                                                     | 23   |
|                 | Rapidly solidifying slag for higher deposition rate in all position welding.                                                                                                                                             |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ) and 100% Carbon Dioxide (CO <sub>2</sub> ).                                                                                                    |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas.                                                                                                                                                     |      |
| MEGAFIL® 731 B  | Basic flux-cored wire for non-alloyed steels < 460 MPa yield strength.                                                                                                                                                   | 24   |
|                 | Extremely crack resistant weld metal. Well suited for welding high carbon steels and critical mixed                                                                                                                      |      |
|                 | base metal combinations. Ideal metallurgical choice for repair welding and buffer layers.                                                                                                                                |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ) and 100% Carbon Dioxide (CO <sub>2</sub> ).                                                                                                    |      |
| MEGAFIL® 740 B  | Basic flux-cored wire with < 1.0% Ni for non-alloyed steels < 500 MPa yield strength.                                                                                                                                    | 25   |
|                 | Extremely crack resistant weld metal. Well suited for welding high carbon steels and critical                                                                                                                            |      |
|                 | mixed base metal combinations. For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                                                                                                |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas.                                                                                                                                                     |      |
| Weather resist  | ing steels                                                                                                                                                                                                               |      |
| MEGAFIL® 281 M  | $\label{eq:metal-cored} \textit{Metal-cored wire with} < 1.0\% \; \textit{Ni},  0.5\% \; \textit{Cu} \; \textit{and} \; 0.5\% \; \textit{Cr} \; \textit{for weather proof steels} < 460 \; \textit{MPa yield strength}.$ | 26   |
|                 | High deposition rate, excellent impact toughness properties down to -40° C.                                                                                                                                              |      |
|                 | Suitable for robot applications. Ideal for use in short arc and spray arc.                                                                                                                                               |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                                                                                                                               |      |
| MEGAFIL® 781 R  | Micro-alloyed rutile flux-cored wire with < 1.0% Ni and 0.5% Cu for weatherproof steels < 460 MPa yield strength.                                                                                                        | 27   |
|                 | Rapidly solidifying slag for higher deposition rate in all position welding.                                                                                                                                             |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                                                                                                                               |      |
|                 | Excellent impact toughness properties down to -40° C with mixed gas.                                                                                                                                                     |      |

| Product         | Features                                                                                                                | Page |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|------|
| High-strength f | ine grain steels                                                                                                        |      |
| MEGAFIL® 940 M  | Metal-cored wire with 2% Ni for high strength steel < 550 MPa yield strength.                                           | 28   |
|                 | Particularely developed for welding shipbuilding steels such as HY80.                                                   |      |
|                 | WIWEB approval and CTOD tested -40°C. Ideal for use in short arc and spray arc.                                         |      |
|                 | Excellent impact toughness down to -60°C with mixed gas.                                                                |      |
| MEGAFIL® 610 M  | Metal-cored wire with 1.0% Ni for high strength steel < 620 MPa yield strength.                                         | 29   |
| WEGAPIL 010 W   | High deposition rate. Suitable for robot applications. Ideal for use in short arc and spray arc.                        | 29   |
|                 | Excellent impact toughness properties down to -60° C with mixed gas.                                                    |      |
|                 |                                                                                                                         |      |
| MEGAFIL® 620 M  | Metal-cored wire with 1,7% Ni for high strength steel < 620 MPa yield strength.                                         | 30   |
|                 | High deposition rate. Suitable for robot applications. Ideal for use in short arc and spray arc.                        |      |
|                 | Excellent impact toughness down to -60°C with mixed gas.                                                                |      |
|                 |                                                                                                                         |      |
| MEGAFIL® 742 M  | Metal-cored wire with Ni, Mo and Cr for high strength steel < 690 MPa yield strength.                                   | 31   |
|                 | High deposition rate. Ideal for use in short arc and spray arc. Suitable for robot applications.                        |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas.                                                    |      |
| MEGAFIL® 1100 M | Metal-cored wire with Ni, Mo and Cr for high strength steel < 960 (1100) MPa yield strength.                            | 32   |
| WEGALIE 1100 W  | High deposition rate. Suitable for robot applications. Ideal for use in short arc and spray arc.                        | 32   |
|                 | Excellent impact toughness properties down to -40° C with mixed gas.                                                    |      |
|                 |                                                                                                                         |      |
| MEGAFIL® 550 R  | Micro-alloyed rutile flux-cored wire with > 1.0% Ni for high strength steel < 550 MPa yield strength.                   | 33   |
|                 | Rapidly solidifying slag for higher deposition rate in all position welding.                                            |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide ( ${\rm CO_2}$ ), 100% Carbon Dioxide ( ${\rm CO_2}$ ) possible. |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas.                                                    |      |
| MEGAFIL® 610 R  | Micro-alloyed rutile flux-cored wire with 1.0% Ni for high strength steel < 620 MPa yield strength.                     | 34   |
| WEGATTE OTO K   | Rapidly solidifying slag for higher deposition rate in all position welding.                                            | 34   |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                              |      |
|                 | Excellent impact toughness properties down to -40° C with mixed gas.                                                    |      |
|                 |                                                                                                                         |      |
| MEGAFIL® 620 R  | Micro-alloyed rutile flux-cored wire with 1.7% Ni for high strength steel $<$ 620 MPa yield strength.                   | 35   |
|                 | Rapidly solidifying slag for higher deposition rate in all position welding.                                            |      |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                              |      |
|                 | Excellent impact toughness properties down to -40° C with mixed gas.                                                    |      |
| MEGAFIL® 690 R  | Micro-alloyed rutile flux-cored wire for high strength steel < 690 MPa yield strength.                                  | 36   |
| LUAIIL UUU N    | Rapidly solidifying slag for higher deposition rate in all position welding.                                            | 30   |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                              |      |
|                 | Excellent impact toughness properties down to -40° C with mixed gas.                                                    |      |
|                 |                                                                                                                         |      |
| MEGAFIL® 610 B  | Basic flux-cored wire with 1.0% Ni for high strength steels < 620 MPa yield strength.                                   | 37   |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ). Extremely crack resistant weld metal.        |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas.                                                    |      |
|                 |                                                                                                                         |      |

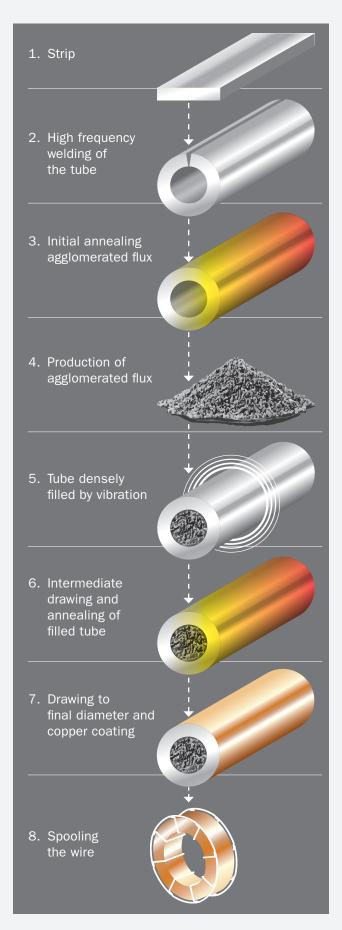
## **MEGAFIL®** Quick Selection Guide

| Product         | Features                                                                                                   | Page |
|-----------------|------------------------------------------------------------------------------------------------------------|------|
| MEGAFIL® 742 B  | Basic flux-cored wire with Ni, Mo and Cr for high strength steel < 690 MPa yield strength.                 | 38   |
|                 | Extremely crack resistant weld metal.                                                                      |      |
|                 | Excellent impact toughness properties down to -60° C with mixed gas, as welded and stress relief annealed. |      |
| MEGAFIL® 745 B  | Basic flux-cored wire with Ni, Mo and Cr for high strength steel < 960 (1100) MPa yield strength.          | 39   |
|                 | Extremely crack resistant weld metal.                                                                      |      |
|                 | Excellent impact toughness properties down to -40° C with mixed gas.                                       |      |
| Quenched and    | tempered steels                                                                                            |      |
| MEGAFIL® 807 M  | Metal-cored wire for non-alloyed steels < 890 MPa yield strength and temperable,                           | 40   |
|                 | high-strength fine grain structural steels < 700 MPa such as 25CrMo4; 34CrMo4; 28NiCrMo5-5;                |      |
|                 | 42CrMo4 typically ASTM A 829 M.                                                                            |      |
| Creep resisting | steels                                                                                                     |      |
| MEGAFIL® 235 M  | Metal-cored wire with 0.5% Mo for creep resisting steels < 460 MPa yield strength.                         | 41   |
|                 | Good arc restriking even with cold wire tip, suitable for robot applications.                              |      |
|                 | Ideal for use of short arc and spray arc. Excellent gap bridging for root welding.                         |      |
|                 | High-efficiency type for economic production of Mo-steels up to 500° C (932° F).                           |      |
|                 | Excellent impact toughness properties down to -40° C with mixed gas.                                       |      |
| MEGAFIL® P36 M  | Metal-cored wire with 1.0% Ni and 0.5% Mo for creep resisting steels < 550 MPa yield strength.             | 42   |
|                 | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                 |      |
|                 | Excellent gap bridging for root welding. Well suited for steels such as 20MnMoNi4-5 / 15NiCuMoNb5 (WB36).  |      |
|                 | Excellent impact toughness properties down to -40° C with mixed gas, as welded and stress relief annealed. |      |
| MEGAFIL® 236 M  | Metal-cored wire with 1.0% Cr and 0.5% Mo for creep resisting steels < 460 MPa yield strength.             | 43   |
|                 | Good arc restriking even with cold wire tip, suitable for robot applications.                              |      |
|                 | Ideal for use of short arc and spray arc. Excellent gap bridging for root welding.                         |      |
|                 | High-efficiency type for economic production of CrMo-steels up to 550° C (1022° F).                        |      |
|                 | Excellent impact toughness properties down to -20° C with mixed gas, stress relief annealed.               |      |
| MEGAFIL® 237 M  | Metal-cored wire with 2.25% Cr and 1.0% Mo for creep resisting steels < 460 MPa yield strength.            | 44   |
|                 | Good arc restriking even with cold wire tip, suitable for robot applications.                              |      |
|                 | Ideal for use of short arc and spray arc. High-efficiency type for economic production of                  |      |
|                 | creep resisting steels and pressure-hydrogen-resistant 2 <sup>1</sup> / <sub>4</sub> Cr1Mo-steels.         |      |
|                 | Excellent impact toughness properties down to -20° C with mixed gas, stress relief annealed.               |      |


| Product        | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| MEGAFIL® P5 M  | Metal-cored wire with 5.0% Cr and 0.5% Mo for creep resisting steels < 460 MPa yield strength.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45   |
|                | Good arc restriking even with cold wire tip, suitable for robot applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                | Ideal for use of short arc and spray arc. High-efficiency type for economic production of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                | creep resisting steels and pressure-hydrogen-resistant 5Cr1Mo-steels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| MEGAFIL® 825 R | Micro-alloyed rutile flux-cored wire with 0.5% Mo for creep resisting steels < 460 MPa yield strength.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46   |
|                | Rapidly solidifying slag for higher deposition rate in all position welding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                | For mixed gas 75-85% Argon (Ar)/Balance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|                | High-efficiency type for economic production of Mo-steels up to 500° C (932° F).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| MEGAFIL® 836 R | Micro-alloyed rutile flux-cored wire with 1.0% Cr and 0.5% Mo for creep resisting steels < 460 MPa yield strength.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47   |
|                | Rapidly solidifying slag for higher deposition rate in all position welding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                | High-efficiency type for economic production of CrMo-steels up to 550° C (1022° F).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| MEGAFIL® 735 B | Basic flux-cored wire with 0.5% Mo for creep resisting steels < 460 MPa yield strength.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48   |
|                | Extremely crack resistant weld metal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide ( $\mathrm{CO}_2$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|                | High-efficiency type for economic production of Mo-steels up to 500° C (932° F).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|                | Excellent impact toughness properties down to -40° C with mixed gas, as welded and stress relief annealed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| MEGAFIL® P36 B | Basic flux-cored wire with 1.0% Ni and 0.5% Mo for high strength steel < 550 MPa yield strength.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49   |
|                | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                | Extremely crack resistant weld metal. Well suited for steels such as 20MnMoNi4-5 / 15NiCuMoNb5 (WB36).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                | Excellent impact toughness properties down to -40° C with mixed gas, as welded and stress relief annealed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| MEGAEU & 700 B | Decision was decision with 4 000 Occasion 500 May for example and the state of the | 50   |
| MEGAFIL® 736 B | Basic flux-cored wire with 1.0% Cr and 0.5% Mo for creep resisting steels < 460 MPa yield strength.  Extremely crack resistant weld metal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50   |
|                | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                | High-efficiency type for economic production of CrMo-steels up to 550° C (1022° F).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|                | Excellent impact toughness properties down to -40° C with mixed gas, stress relief annealed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| MEGAFIL® 737 B | Basic flux-cored wire with 2.25% Cr and 1.0% Mo for creep resisting steels < 550 MPa yield strength.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51   |
|                | High-efficiency type for economic production of creep resistant steels and pressure-hydrogen-resistant steels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                | For mixed gas 75-85% Argon (Ar)/Balance Carbon Dioxide (CO <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                | Extremely crack resistant weld metal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |

## **MEGAFIL®** Quick Selection Guide

| Product          | Features                                                                                                                                                            | Page |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Hardfacing       |                                                                                                                                                                     |      |
| MEGAFIL® A 220 M | Metal-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) /Balance Carbon Dioxide (CO <sub>2</sub> ).                                                       | 73   |
|                  | Well suited for wear resisting parts subject to impact and shock.                                                                                                   |      |
|                  | Hardness of the pure weld metal from the 3rd layer: 20-30 HRC.                                                                                                      |      |
| MEGAFIL® A 730 M | Metal-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) /Balance Carbon Dioxide (CO <sub>2</sub> ).                                                       | 74   |
| MEGALIE A 700 M  | Well suited for wear resisting parts subject to impact and shock.                                                                                                   | 1-7  |
|                  | Hardness of the pure weld metal from the 3rd layer: 25-35 HRC.                                                                                                      |      |
|                  |                                                                                                                                                                     |      |
| MEGAFIL® A 740 M | Metal-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) /Balance Carbon Dioxide (CO <sub>2</sub> ).                                                       | 75   |
|                  | Well suited for wear resisting parts subject to heavy impact and shock.                                                                                             |      |
|                  | Hardness of the pure weld metal from the 3rd layer: 35-45 HRC.                                                                                                      |      |
| MEGAFIL® A 750 M | Metal-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) /Balance Carbon Dioxide (CO <sub>2</sub> ).                                                       | 76   |
|                  | Well suited for wear resisting parts subject to heavy impact and shock.                                                                                             |      |
|                  | Hardness of the pure weld metal from the 3rd layer: 45-55 HRC.                                                                                                      |      |
|                  |                                                                                                                                                                     |      |
| MEGAFIL® A 760 M | Metal-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) /Balance Carbon Dioxide ( ${\rm CO_2}$ ).                                                         | 77   |
|                  | Well suited for wear resisting parts subject to heavy impact and shock.                                                                                             |      |
|                  | Hardness of the pure weld metal from the 3rd layer: 55-65 HRC.                                                                                                      |      |
| MEGAFIL® A 760 B | Basic flux-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) /Balance Carbon Dioxide (CO <sub>2</sub> ).                                                  | 78   |
|                  | Well suited for wear resisting parts subject to heavy impact and shock.                                                                                             |      |
|                  | Hardness of the pure weld metal from the 3rd layer: 55-65 HRC.                                                                                                      |      |
| MEGAFIL® A 861 M | High alloyed motal cored wire for Hardfacing using mixed see 75 95% Argon (Ar) / Ralance Carbon                                                                     | 79   |
| WEGAFIL A GOT W  | High-alloyed metal-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) / Balance Carbon Dioxide (CO <sub>2</sub> ). Can also be used without shielding gas. | 19   |
|                  | Well suited for wear resisting parts subject to abrasion and heavy impact and shock.                                                                                |      |
|                  | Hardness of the pure weld metal from the 2nd layer: 56-64 HRC.                                                                                                      |      |
|                  | ,                                                                                                                                                                   |      |
| MEGAFIL® A 863 M | High-alloyed metal-cored wire for Hardfacing using mixed gas 75-85% Argon Ar) /Balance Carbon                                                                       | 80   |
|                  | Dioxide (CO <sub>2</sub> ). Can also be used without shielding gas.                                                                                                 |      |
|                  | Well suited for wear resisting parts subject to abrasion.                                                                                                           |      |
|                  | Hardness of the pure weld metal from the 2nd layer: 58-66 HRC.                                                                                                      |      |
| MEGAFIL® A 864 M | High-alloyed metal-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) /Balance Carbon                                                                      | 81   |
|                  | Dioxide (CO <sub>2</sub> ). Can also be used without shielding gas.                                                                                                 |      |
|                  | Well suited for wear resisting parts subject to abrasion.                                                                                                           |      |
|                  | Hardness of the pure weld metal from the 2nd layer: 60-68 HRC.                                                                                                      |      |
| MEGAFIL® A 867 M | High-alloyed metal-cored wire for Hardfacing using mixed gas 75-85% Argon (Ar) /Balance Carbon                                                                      | 82   |
|                  | Dioxide (CO <sub>2</sub> ). Can also be used without shielding gas.                                                                                                 |      |
|                  | Well suited for wear resisting parts subject to abrasion.                                                                                                           |      |
|                  | Hardness of the pure weld metal from the 2nd layer: 62-70HRC.                                                                                                       |      |
|                  |                                                                                                                                                                     |      |


# MEGAFIL® Seamless Cored Wires Production Technology

The unique production technology ITW Welding utilizes to manufacture MEGAFIL seamless flux- and metal-cored wires results in valuable product benefits for end users. Strips are folded round, closed by high frequency welding and drawn to filling diameter.



In the next step, the tube is filled with agglomerated flux by means of a vibration system. In several steps the wire is annealed, drawn to final diameter and finally copper-coated.

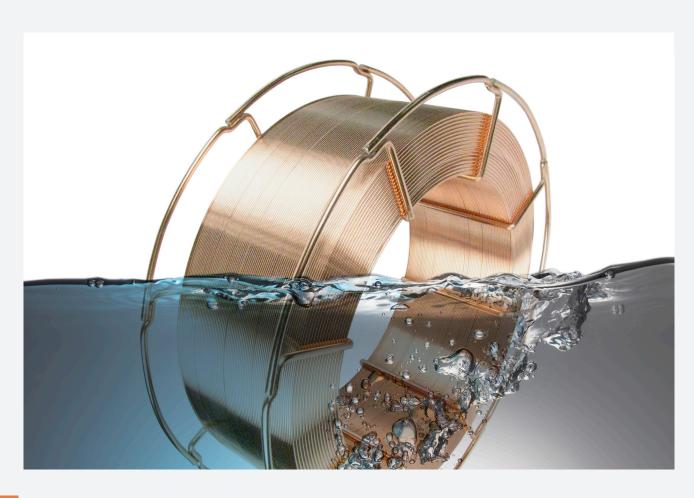
Subsequently, the wire is precision layer-wound onto various spool sizes. The result is a full penetration closed cored wire with an extremely dry flux core, which is totally insensitive for moisture reabsorption during storage and use.



## **MEGAFIL®** Characteristics and Advantages

#### **Guaranteed no moisture pick-up**

MEGAFIL® seamless flux- and metal-cored wires are closed by full penetration welding and totally insensitive to moisture absorption, even under extreme climatic conditions with tropical temperatures and very high relative humidity. The filling remains dry throughout the entire process of storage and use in welded fabrication, preventing hydrogen induced cracking caused by moisture in the consumable. MEGAFIL® cored wires require no special storage conditions.


Re-drying prior to use is never necessary.

# The special MEGAFIL® manufacturing technology enables production of cored wires with these and other unique advantages for end users.

 Prevention of hydrogen induced cracking.
 Weld metal hydrogen content tested according to EN and AWS is below 4 ml/100 g weld metal.
 Typical values below H3.

- No special storage conditions required.
   Can be stored like solid wires for an indefinite period, without any risk of moisture absorption.
- Re-drying not necessary even after storage under humid conditions.
- Resistance to moisture pick-up when mounted on wire feeder, out of packaging.
- No discontinuities in the filling dependable weld metal properties.
- Copper-coating for optimal current transfer from contact tip to wire and for low contact tip wear.
- Carefully controlled cast, helix and diameter gives good wire feeding and straight delivery at contact tip.
   Ideal for robotic welding.

MEGAFIL® flux- and metal-cored wires are available for all construction steel qualities with a wide range of approvals from authorities such as ABS, DNV, LR and TÜV. Wires can be supplied with 3.1 certificates for chemical composition and mechanical properties.



## **Product Overview MEGAFIL® Seamless Cored Wires**

## Joint Welding

| Non-alloy and fine grain steels |                                       |                                              |                                     |      |
|---------------------------------|---------------------------------------|----------------------------------------------|-------------------------------------|------|
| Туре                            | EN ISO 17632                          | AWS                                          | AWS A5.36                           | Page |
| MEGAFIL® 710 M                  | T 46 6 M M 1 H5                       | AWS A5.18: E70C-6M H4                        | E71T15-M21A8-CS1-H4                 | 18   |
| MEGAFIL® 240 M                  | T 50 6 1Ni M M 1 H5                   | AWS A5.28: E80C-Ni1 H4                       | E81T15-M21A8-Mi1-H4                 | 19   |
| MEGAFIL® 713 R                  | M21: T 46 4 P M 1 H5                  | AWS A5.20: M21: E71T-1M-J H4,                | M21: E71T1-M21A4-CS1-H4             | 20   |
|                                 | CO <sub>2</sub> : T 46 2 P C 1 H5     | AWS A5.20: CO <sub>2</sub> : E71T-1C-J H4    | CO <sub>2</sub> : E71T1-C1A0-CS1-H4 |      |
| MEGAFIL® 716 R                  | T 46 6 P M 1 H5                       | AWS A5.20: E71T-9M-J H4                      | E71T1-M21A8-CS1-H4                  | 21   |
| MEGAFIL® 821 R                  | T 50 6 1Ni P M 1 H5                   | AWS A5.29: E81T1-Ni1M-J H4                   | E81T1-M21A8-NI1-H4                  | 22   |
| MEGAFIL® 822 R                  | CO <sub>2</sub> : T 46 4 1Ni P C 1 H5 | AWS A5.29: CO <sub>2</sub> : E81T1-Ni1C-J H4 | CO <sub>2</sub> : E81T1-C1A4-Ni1-H4 | 23   |
|                                 | M21: T 50 6 1Ni P M 1 H5              | AWS A5.29: M21: E81T1-Ni1M-J H4              | M21: E81T1-M21A8-Ni1-H4             |      |
| MEGAFIL® 731 B                  | M21: T 46 6 B M 3 H5                  |                                              | M21: E70T5-M21A8-CS1-H4             | 24   |
|                                 | CO <sub>2</sub> : T 42 4 B C 3 H5     |                                              | CO <sub>2</sub> : E70T5-C1A4-CS1-H4 |      |
| MEGAFIL® 740 B                  | T 50 6 1Ni B M 3 H5                   | AWS A5.29: E80T5-Ni1M-J H4                   | E80T5-M21A8-Ni1-H4                  | 25   |

| Weather resisting steels |                   |                       |                    |      |
|--------------------------|-------------------|-----------------------|--------------------|------|
| Туре                     | EN ISO 17632      | AWS                   | AWS A5.36          | Page |
| MEGAFIL® 281 M           | T 46 4 Z M M 1 H5 | AWS A5.28: E80C-W2 H4 | E81T15-M21A4-W2-H4 | 26   |
| MEGAFIL® 781 R           | T 46 4 Z P M 1 H5 | AWS A5.29: E81T1-G H4 | E81T1-M21A4-G-H4   | 27   |

| High-strength fin | e grain steels               |                            |                     |      |
|-------------------|------------------------------|----------------------------|---------------------|------|
| Туре              | EN ISO 18276                 | AWS                        | AWS A5.36           | Page |
| MEGAFIL® 940 M    | T 55 6 Mn2,5Ni M M21 1 H5    |                            | E91T15-M21A8-K7-H4  | 28   |
| MEGAFIL® 610 M    | T 62 6 Mn1Ni M M21 1 H5      |                            | E101T15-M21A8-K2-H4 | 29   |
| MEGAFIL® 620 M    | T 62 6 Mn1,5Ni M M21 1 H5    |                            | E101T15-M21A8-K2-H4 | 30   |
| MEGAFIL® 742 M    | T 69 6 Mn2NiCrMo M M21 1 H5  | AWS A5.28: E110C-K4 H4     | E111T15-M21A8-K4-H4 | 31   |
| MEGAFIL® 1100 M   | T 89 4 Mn2Ni1CrMo M M21 1 H5 | AWS A5.28: ~ E120C-K4 H4   | E131T15-M21A4-K4-H4 | 32   |
| MEGAFIL® 550 R    | T 55 6 Mn1,5Ni P M1 H5       | AWS A5.29: E91T1-K2M-J H4  | E91T1-M21A8-K2-H4   | 33   |
| MEGAFIL® 610 R    | T 62 4 Mn1Ni P M21 1 H5      |                            | E101T1-M21A4-K2-H4  | 34   |
| MEGAFIL® 620 R    | T 62 4 Mn1,5Ni P M21 1 H5    | AWS A5.29: E101T1-K2M H4   | E101T1-M21A4-K2-H4  | 35   |
| MEGAFIL® 690 R    | T 69 6 Z P M21 1 H5          | AWS A5.29: E111T1-G M-J H4 | E111T1-M21A4-G-H4   | 36   |
| MEGAFIL® 610 B    | T 62 6 Mn1Ni B M21 3 H5      |                            | E100T5-M21A8-K2-H4  | 37   |
| MEGAFIL® 742 B    | T 69 6 Mn2NiCrMo B M21 3 H5  | AWS A5.29: E110T5-K4M H4   | E110T5-M21A8-K4-H4  | 38   |
| MEGAFIL® 745 B    | T 89 4 Mn2Ni1CrMo B M21 3 H5 |                            | E130T5-M21A4-K4-H4  | 39   |

## **Product Overview MEGAFIL® Seamless Cored Wires**

| Quenched and t | Quenched and tempered steels |     |                    |      |  |
|----------------|------------------------------|-----|--------------------|------|--|
| Туре           | EN ISO 18276                 | AWS | AWS A5.36          | Page |  |
| MEGAFIL® 807 M | T 69 0 Z M M21 1 H5          |     | E111T15-M21P0-G-H4 | 40   |  |
|                | T 89 0 Z M M21 1 H5          |     | E131T15-M21A0-G-H4 |      |  |

| Creep resisting steels |                    |                         |                         |                    |      |
|------------------------|--------------------|-------------------------|-------------------------|--------------------|------|
| Туре                   | EN ISO 17634       | EN ISO 18276            | AWS                     | AWS A5.36          | Page |
| MEGAFIL® 235 M         | T Mo M M21 1 H5    |                         | AWS A5.28: E80C-G H4    | E81T15-M21P4-A1-H4 | 41   |
| MEGAFIL® P36 M         | T Z M M21 1 H5     | T 55 4 1NiMo M M21 1 H5 |                         | E91T15-M21P4-K1-H4 | 42   |
| MEGAFIL® 236 M         | T CrMo1 M M21 1 H5 |                         | AWS A5.28: E80C-B2 H4   | E81T15-M21P4-B2-H4 | 43   |
| MEGAFIL® 237 M         | T CrMo2 M M21 1 H5 |                         | AWS A5.28: E90C-B3 H4   | E91T15-M21P0-B3-H4 | 44   |
| MEGAFIL® P5 M          | T CrMo5 M M21 1 H5 |                         | AWS A5.28: E80C-B6 H4   | E81T15-M21P0-B6-H4 | 45   |
| MEGAFIL® 825 R         | T MoL P M21 1 H5   |                         | AWS A5.29: E81T1-A1M H4 | E81T1-M21PY-A1-H4  | 46   |
| MEGAFIL® 836 R         | T CrMo1 P M21 1 H5 |                         | AWS A5.29: E81T1-B2M H4 | E81T1-M21PY-B2-H4  | 47   |
| MEGAFIL® 735 B         | T Mo B M21 3 H5    |                         | AWS A5.29: E80T5-G H4   | E80T5-M21P4-A1-H4  | 48   |
| MEGAFIL® P36 B         | T Z B M21 3 H5     | T 55 4 1NiMo B M21 3 H5 |                         | E90T5-M21P4-K1-H4  | 49   |
| MEGAFIL® 736 B         | T CrMo1 B M21 3 H5 |                         | AWS A5.29: E80T5-B2M H4 | E80T5-M21P4-B2-H4  | 50   |
| MEGAFIL® 737 B         | T CrMo2 B M21 3 H5 |                         | AWS A5.29: E90T5-B3M H4 | E90T5-M21P0-B3-H4  | 51   |

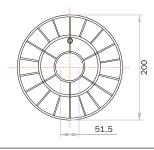
## **Product Overview MEGAFIL® Seamless Cored Wires**

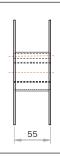
## Hardfacing

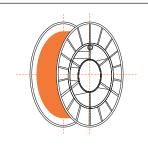
| Туре             | EN ISO 14700 | Page Page |
|------------------|--------------|-----------|
| MEGAFIL® A 220 M | T Fe9        | 74        |
| MEGAFIL® A 730 M | T Fe1        | 75        |
| MEGAFIL® A 740 M | T Z Fe2      | 76        |
| MEGAFIL® A 750 M | T Z Fe2      | 77        |
| MEGAFIL® A 760 M | T Fe2        | 78        |
| MEGAFIL® A 760 B | T Fe2        | 79        |
| MEGAFIL® A 861 M | T Fe8        | 80        |
| MEGAFIL® A 863 M | T Z Fe14     | 81        |
| MEGAFIL® A 864 M | T Fe13       | 82        |
| MEGAFIL® A 867 M | T Z Fe13     | 83        |
|                  |              |           |

## **Storage and Handling Recommendations**

MEGAFIL® seamless flux- and metal-cored wires are totally insensitive to moisture absorption. They can be stored for an indefinite period of time. Like solid wire, however, they are copper-coated and direct contact with any liquid - particularly water - must be avoided to prevent the formation of rust on the wire surface. Rust is a potential source of weld metal hydrogen, but it can also cause poor wire feeding.

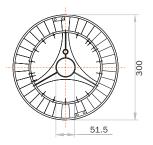

It is therefore recommended to store MEGAFIL® wires in a dry area - away from weather influences - and in their original packaging. Any sudden drop in temperature should be avoided to prevent the formation of condensate water. It is sufficient to slightly warm the storeroom during winter months. Partly used wire spools must be re-packed in their original plastic bag, carefully sealed, and stored in their original cardboard boxes.

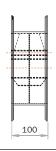

## Summarized MEGAFIL® storage and handling recommendations are:


- Store wires under dry conditions in the original sealed packaging.
- Avoid contact between wire and substances such as water or any other kind of liquid or vapour, oil, grease or corrosion.
- Do not touch the wire surface with bare hands.
- Avoid exposure of the wire below dew point.
- Do not leave unprotected wire spools in workshops overnight.
- Store the wire in its original plastic bag and box when not used.
- Apply first in first out for stocked wires.

## **Packaging**

#### Wire or plastic basket spools



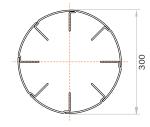





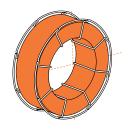


#### Plastic spool KD 200

Diameter: 200 mm Widht: 55 mm Suitable for a 50 hub

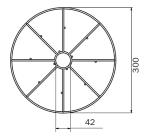





#### Plastic spool KD 300

Diameter: 300 mm Widht: 103 mm Suitable for a 50 hub





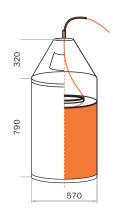



#### Basket spool K 300

Diameter: 300 mm Widht: 98 mm Suitable for a 50 hub



Other types on request



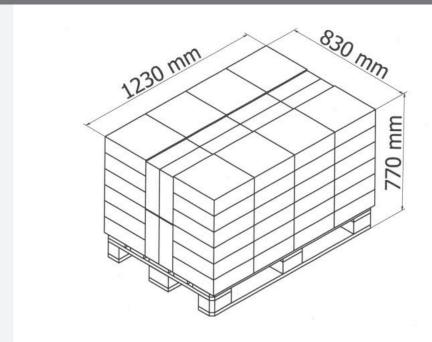



#### Basket spool K 3000

Diameter: 300 mm Widht: 98 mm Suitable for a 50 hub

#### **Drum**

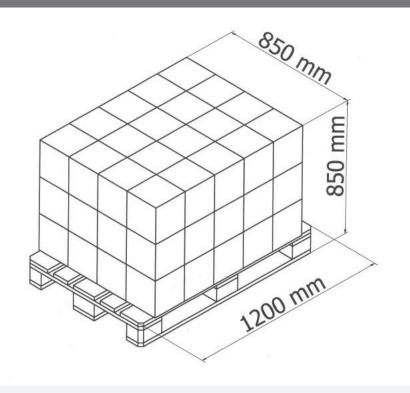



Diameter: 570 mm Weight: 300 kg

ø 1.0 mm - 1.4 mm = 300 kg

 $\emptyset$  1.6 mm = 250 kg

## **Packing Information**


#### For spool type K 300 / KD 300 / K 3000



64 spools per Euro-Pallet

Net-weight: 1024 kg

#### For spool type KD 200



240 spools in 60 cartons per Euro-Pallet

Net-weight: 1200 kg

## Joint Welding



## MEGAFIL® 710 M



AWS A5.18: E70C-6M H4

AWS A5.36: E71T15-M21A8-CS1-H4 EN ISO 17632-A: T 46 6 M M 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- · Extremely low diffusible hydrogen weld deposit
- · Good reignition characteristics
- · Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Suitable for robot applications
- · CTOD tested -20°C
- · Reduces clean-up time, improves productivity
- Root welding without backing
- · Automatic root welding possible

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); 100% Carbon Dioxide (CO<sub>2</sub>); SHIELDING GAS

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.0 - 2.4 mm (0.039 - 3/32")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 36              |
|------------------------------|---------------|-------------------------------------|
| Unalloyed structural steels  | Rel ≤ 355 MPa | S185 - S355, A 106 Gr.B, A 333 Gr.6 |
| Boiler steels                | Rel ≤ 355 MPa | P235GH - P355GH                     |
| Pipe steels                  | Rel ≤ 460 MPa | P235T1/T2 - P460NL2; L210 - L445MB  |
| Fine grain structural steels | Rel ≤ 460 MPa | S235 - S460QL1                      |
| Steels to API-standard       | Rel ≤ 460 MPa | X42 - X60                           |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.05  | Nickel (Ni)     | - |
|----------------|-------|-----------------|---|
| Manganese (Mn) | 1.5   | Molybdenum (Mo) | - |
| Silicon (Si)   | 0.7   | Chromium (Cr)   | - |
| Sulphur (S)    | 0.015 |                 |   |
| Phosphorus (P) | 0.015 |                 |   |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO2)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 600 (87)                 | 550 - 680 (80 - 99)         |
| Yield strength Rp0.2 | 530 (77)                 | > 460 (67)                  |
| Expansion A5         | 28%                      | 26%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 140 (103)                   | > 47 (35)                      |
| -60° C           | 100 (74)                    | > 47 (35)                      |

APPROVALS: TÜV, DB, BV, LR, ABS, CWB, DNV-GL, RINA

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

### MEGAFIL® 240 M



AWS A5.28: E80C-Ni1 H4

AWS A5.36: E81T15-M21A8-Ni1-H4 EN ISO 17632-A: T 50 6 1Ni M M 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

#### **BENEFITS**

#### · Extremely low diffusible hydrogen weld deposit

- · Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Suitable for robot applications
- · CTOD tested -20°C
- · Reduces clean-up time, improves productivity
- · Root welding without backing
- · Automatic root welding possible

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); 100% Carbon Dioxide (CO<sub>2</sub>);

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.0 - 1.6 mm (0.039 - 1/16")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 36                     |
|------------------------------|---------------|--------------------------------------------|
| Unalloyed structural steels  | Rel ≤ 500 MPa | S185 - S500, A 106 Gr.B, A 333 Gr.6, A 516 |
| Boiler steels                | Rel ≤ 500 MPa | P235GH - P485GH                            |
| Pipe steels                  | Rel ≤ 500 MPa | P235T1/T2 - P500NL2; L210 - L485MB         |
| Fine grain structural steels | Rel ≤ 500 MPa | S235 - S500QL1                             |
| Steels to API-standard       | Rel ≤ 500 MPa | X42 - X70                                  |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 0.9 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.3   | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.7   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>a</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 620 (90)                 | 560 - 720 (81 - 104)        |
| Yield strength Rp0.2 | 550 (80)                 | > 500 (73)                  |
| Expansion A5         | 27 %                     | 24 %                        |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 120 (89)                    | > 47 (35)                      |
| -60° C           | 90 (66)                     | > 47 (35)                      |

APPROVALS: TÜV, DB, DNV-GL

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 713 R



AWS A5.20: M21: E71T-1M-J H4

AWS A5.36: M21: E71T1-M21A4-CS1-H4

EN ISO 17632-A: M21: T 46 4 P M 1 H5

CO<sub>2</sub>: E71T-1C-J H4

CO<sub>3</sub>: E71T1-C1A0-CS1-H4

CO<sub>3</sub>: T 46 2 P C 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- Extremely low diffusible hydrogen weld deposit
- · Low fumes and spatter
- · Easy slag removal
- Able to bridge poor fit-up without burn-through
- · Good impact toughness
- · Smooth arc characteristic

- **BENEFITS**
- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- Excellent all position welding
- Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- · Root welding on ceramic backing
- Automatic root welding on ceramic backing

- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); 100% Carbon Dioxide (CO<sub>2</sub>);

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.0 - 2.4 mm (0.039 - 3/32")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

\*Measurement technique is the carrier gas method according to AWS and ISO

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 36              |
|------------------------------|---------------|-------------------------------------|
| Unalloyed structural steels  | Rel ≤ 355 MPa | S185 - S355, A 106 Gr.B, A 333 Gr.6 |
| Boiler steels                | Rel ≤ 355 MPa | P235GH - P355GH                     |
| Pipe steels                  | Rel ≤ 460 MPa | P235T1/T2 - P460NL2; L210 - L445MB  |
| Fine grain structural steels | Rel ≤ 460 MPa | S235 - S460QL1                      |
| Steels to API-standard       | Rel ≤ 460 MPa | X42 - X60                           |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.05  | Nickel (Ni)     | - |
|----------------|-------|-----------------|---|
| Manganese (Mn) | 1.3   | Molybdenum (Mo) | - |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | - |
| Sulphur (S)    | 0.015 |                 |   |
| Phosphorus (P) | 0.015 |                 |   |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO2)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 600 (87)                 | 550 - 680 (80 - 99)         |
| Yield strength Rp0.2 | 530 (77)                 | > 460 (67)                  |
| Expansion A5         | 26%                      | 22%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO2 and 100% CO2)

| Mechanical Tests | Typical value                | s [J] (ft.lbf)       | ISO Specifica                | tion [J] (ft.lbf)    |
|------------------|------------------------------|----------------------|------------------------------|----------------------|
|                  | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> |
| -20° C           | 100 (74)                     | 70 (52)              | > 47 (35)                    | > 47 (35)            |
| -40° C           | 70 (52)                      |                      | > 47 (35)                    |                      |

### MEGAFIL® 716 R



AWS A5.20: E71T-9M-J H4

AWS A5.36: E71T1-M21A8-CS1-H4 EN ISO 17632-A: T 46 6 P M 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

**STORAGE** 

#### · Extremely low diffusible hydrogen weld deposit

- · Low fumes and spatter
- · Easy slag removal
- Able to bridge poor fit-up without burn-through
- Good impact toughness
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Excellent all position welding
- · Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- · CTOD tested -20°C
- · Root welding on ceramic backing
- · Automatic root welding on ceramic backing

- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); 100% Carbon Dioxide (CO<sub>2</sub>);

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 36              |
|------------------------------|---------------|-------------------------------------|
| Unalloyed structural steels  | Rel ≤ 355 MPa | S185 - S355, A 106 Gr.B, A 333 Gr.6 |
| Boiler steels                | Rel ≤ 355 MPa | P235GH - P355GH                     |
| Pipe steels                  | Rel ≤ 460 MPa | P235T1/T2 - P460NL2; L210 - L445MB  |
| Fine grain structural steels | Rel ≤ 460 MPa | S235 - S460QL1                      |
| Steels to API-standard       | Rel ≤ 460 MPa | X42 - X60                           |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 0.4 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.3   | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 600 (87)                 | 550 - 670 (80 - 97)         |
| Yield strength Rp0.2 | 530 (77)                 | > 460 (67)                  |
| Expansion A5         | 27%                      | 22%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO2 and 100% CO2)

| Mechanical Tests | Typical v                    | alues [J] (ft.lbf)   | ISO Spec                     | ification [J] (ft.lbf) |
|------------------|------------------------------|----------------------|------------------------------|------------------------|
|                  | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub>   |
| -40° C           | 100 (74)                     | 60 (44)              | > 47 (35)                    | > 47 (35)              |
| -60° C           | 70 (52)                      |                      | > 47 (35)                    |                        |

APPROVALS: TÜV, DB, DNV-GL

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

### MEGAFIL® 821 R



AWS A5.29: E81T1-Ni1M-J H4 AWS A5.36: E81T1-M21A8-Ni1-H4 EN ISO 17632-A: T 50 6 1Ni P M 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

#### Extremely low diffusible hydrogen weld deposit

- · Low fumes and spatter
- · Easy slag removal
- Able to bridge poor fit-up without burn-through
- · Good impact toughness
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Excellent all position welding
- · Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- · CTOD tested -20°C
- · Root welding on ceramic backing
- · Automatic root welding on ceramic backing

- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** 

**STORAGE** 

**TYPE OF CURRENT** 

Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

STANDARD DIAMETERS

Ø 1.0 - 1.6 mm (0.039 - 1/16")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Direct Current Electrode Positive (DCEP)

**RE-DRYING** 

Not required due to seamless wire design The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

\*Measurement technique is the carrier gas method according to AWS and ISO

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 46                         |
|------------------------------|---------------|------------------------------------------------|
| Unalloyed structural steels  | Rel ≤ 500 MPa | S185 - S355, A 106 Gr.B, A 333 Gr.6            |
| Boiler steels                | Rel ≤ 500 MPa | P235GH - P485GH up to A516; A537; A455         |
| Pipe steels                  | Rel ≤ 500 MPa | P235T1/T2 - P485NL2; L210 - L485MB up to A 572 |
| Fine grain structural steels | Rel ≤ 500 MPa | S235 - S500(NL1,2) up to A 572                 |
| Steels to API-standard       | Rel ≤ 500 MPa | X42 - X70                                      |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 0.9 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.3   | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                                         | Typical values MPa (ksi) | ISO Specification MPa (ksi) |  |  |
|------------------------------------------------------------------------------------------|--------------------------|-----------------------------|--|--|
| Tensile Strength Rm                                                                      | 620 (90)                 | 550 - 690 (80 - 100)        |  |  |
| Yield strength Rp0.2                                                                     | 550 (80)                 | > 500 (73)                  |  |  |
| Expansion A5                                                                             | 26%                      | 22%                         |  |  |
| The specified values apply to the as-welded and stress-relieved condition (580°C/120min) |                          |                             |  |  |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                                         | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |
|------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| -40° C                                                                                   | 110 (81)                    | > 47 (35)                      |  |
| -60° C                                                                                   | 80 (59)                     | > 47 (35)                      |  |
| The specified values apply to the as-welded and stress-relieved condition (580°C/120min) |                             |                                |  |

### MEGAFIL® 822 R



AWS A5.29: CO<sub>2</sub>: E81T1-Ni1C-J H4 AWS A5.36: CO<sub>2</sub>: E81T1-C1A4-Ni1-H4 EN ISO 17632-A: CO<sub>2</sub>: T 46 4 1Ni P C 1 H5

M21: E81T1-Ni1M-J H4 M21: E81T1-M21A8-Ni1-H4 M21: T 50 6 1Ni P M 1 H5

**WELDING POSITIONS:** 







#### **FEATURES**

- · Extremely low diffusible hydrogen weld deposit
- · Low fumes and spatter
- · Easy slag removal
- Able to bridge poor fit-up without burn-through
- Good impact toughness
- · Smooth arc characteristic

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Excellent all position welding
- · Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- · Root welding on ceramic backing
- Automatic root welding on ceramic backing

- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); 100% Carbon Dioxide (CO<sub>2</sub>);

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.0 - 1.6 mm (0.039 - 1/16")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 46                         |
|------------------------------|---------------|------------------------------------------------|
| Unalloyed structural steels  | Rel ≤ 500 MPa | S185 - S355, A 106 Gr.B, A 333 Gr.6            |
| Boiler steels                | Rel ≤ 500 MPa | P235GH - P485GH up to A516; A537; A455         |
| Pipe steels                  | Rel ≤ 500 MPa | P235T1/T2 - P485NL2; L210 - L485MB up to A 572 |
| Fine grain structural steels | Rel ≤ 500 MPa | S235 - S500(NL1,2) up to A 572                 |
| Steels to API-standard       | Rel ≤ 500 MPa | X42 - X70                                      |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 0,8 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.2   | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 620 (90)                 | 550 - 680 (80 - 99)         |
| Yield strength Rp0.2 | 550 (80)                 | > 460 (67)                  |
| Expansion A5         | 26%                      | 22%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub> and 100 % CO<sub>2</sub>)

| Mechanical Tests | Typical value                | s [J] (ft.lbf)       | ISO Specifica                | ation [J] (ft.lbf)   |
|------------------|------------------------------|----------------------|------------------------------|----------------------|
|                  | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> |
| -40° C           | 90 (66)                      | 60 (44)              | > 47 (35)                    | > 47 (35)            |
| -60° C           | 60 (44)                      |                      | > 47 (35)                    |                      |

APPROVALS: TÜV, DB, LR, ABS, DNV-GL

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 731 B



AWS A5.20: M21: E70T-5M-J H4

AWS A5.36: M21: E70T5-M21A8-CS1-H4

EN ISO 17632-A: M21: T 46 6 B M 3 H5

CO<sub>2</sub>: E70T-5C-J H4

CO<sub>3</sub>: E70T5-C1A4-CS1-H4

CO<sub>2</sub>: T 42 4 B C 3 H5

#### **WELDING POSITIONS:**







#### **FEATURES**

#### **BENEFITS**

- · Basic slag system
- Low hydrogen weld deposit Ideal for use of short arc and spray arc
- Excellent low temperature impacts
- Low spatter loss
- · Easy slag removal

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- Provides increased toughness
- · For high carbon steels and dissimilar welds with critical weldability
- · For buffer layers

- **APPLICATIONS**
- · Automatic and mechanized welding
- · Steel structures
- Heavy fabrication
- · Severe service
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Single and multi-pass welding
- · Railroad rails
- · Earthmoving equipment

**WIRE TYPE** Gas shielded basic flux-cored wire

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); 100% Carbon Dioxide (CO<sub>2</sub>); SHIELDING GAS

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.0 - 1.6 mm (0.039 - 1/16")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

\*Measurement technique is the carrier gas method according to AWS and ISO

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 46              |
|------------------------------|---------------|-------------------------------------|
| Unalloyed structural steels  | Rel ≤ 355 MPa | S185 - S355, A 106 Gr.B, A 333 Gr.6 |
| Boiler steels                | Rel ≤ 355 MPa | P235GH - P355GH                     |
| Pipe steels                  | Rel ≤ 460 MPa | P235T1/T2 - P460NL2; L210 - L445MB  |
| Fine grain structural steels | Rel ≤ 460 MPa | S235 - S460QL1                      |
| Steels to API-standard       | Rel ≤ 460 MPa | X42 - X60                           |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.05  | Nickel (Ni)     | - |
|----------------|-------|-----------------|---|
| Manganese (Mn) | 1.4   | Molybdenum (Mo) | - |
| Silicon (Si)   | 0.6   | Chromium (Cr)   | - |
| Sulphur (S)    | 0.015 |                 |   |
| Phosphorus (P) | 0.015 |                 |   |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 600 (87)                 | 550 - 680 (80 - 99)         |
| Yield strength Rp0.2 | 530 (77)                 | > 460 (67)                  |
| Expansion A5         | 27%                      | 22%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO2 and 100 % CO2)

| Mechanical Tests | Typical val                  | ues [J] (ft.lbf)     | ISO Specif                   | ication [J] (ft.lbf) |
|------------------|------------------------------|----------------------|------------------------------|----------------------|
|                  | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> |
| -40° C           | 140 (103)                    | 100 (74)             | > 47 (35)                    | > 47 (35)            |
| -60° C           | 100 (74)                     |                      | > 47 (35)                    |                      |

APPROVALS: TÜV, DB, BV, DNV, ABS, DNV-GL

### MEGAFIL® 740 B



AWS A5.29: E80T5-Ni1M-J H4 AWS A5.36: E80T5-M21A8-Ni1-H4 EN ISO 17632-A: T 50 6 1Ni B M 3 H5

#### **WELDING POSITIONS:**







#### **FEATURES**

#### · Basic slag system

- · Low hydrogen weld deposit
- Ideal for use of short arc and spray arc
- · Excellent low temperature impacts
- Low spatter loss
- · Easy slag removal

#### **BENEFITS**

- · Minimizes risk of hydrogen-induced cracking
- · No re-drying
- Provides increased toughness
- · For high carbon steels and dissimilar welds with critical weldability
- · For buffer layers

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Heavy fabrication
- · Non-alloy and fine grain steels
- Vessels
- · General fabrication
- · Single and multi-pass welding
- · Earthmoving equipment

**WIRE TYPE** Gas shielded basic flux-cored wire

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); SHIELDING GAS

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 - 1.6 mm (0.045 - 1/16")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec) **RE-DRYING** Not required due to seamless wire design

The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

**STORAGE** 

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 36                     |
|------------------------------|---------------|--------------------------------------------|
| Unalloyed structural steels  | Rel ≤ 500 MPa | S185 - S500, A 106 Gr.B, A 333 Gr.6, A 516 |
| Boiler steels                | Rel ≤ 500 MPa | P235GH - P485GH                            |
| Pipe steels                  | Rel ≤ 500 MPa | P235T1/T2 - P500NL2; L210 - L485MB         |
| Fine grain structural steels | Rel ≤ 500 MPa | S235 - S500QL1                             |
| Steels to API-standard       | Rel ≤ 500 MPa | X42 - X70                                  |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 0,9 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.2   | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.4   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 620 (90)                 | 550 - 680 (80 - 99)         |
| Yield strength Rp0.2 | 550 (80)                 | > 500 (73)                  |
| Expansion A5         | 27%                      | 22%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 130 (96)                    | > 47 (35)                      |
| -60° C           | 100 (74)                    | > 47 (35)                      |

APPROVALS: TÜV, DB

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 281 M



AWS A5.28: E80C-W2 H4

AWS A5.36: E81T15-M21A4-W2-H4 EN ISO 17632-A: T 46 4 Z M M 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

#### · Extremely low diffusible hydrogen weld deposit

- Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

**TYPE OF CURRENT** 

#### **BENEFITS**

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- Suitable for robot applications
- · Reduces clean-up time, improved productivity
- · Root welding without any backing
- · Automatic root welding possible

#### **APPLICATIONS**

- · Weather resistant steels
- · Steel structures
- · Offshore structures
- · Non-alloy and fine grain steels
- · General fabrication
- · Pipelines
- · Single and multi-pass welding
- · Automatic and mechanized welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

Direct Current Electrode Positive (DCEP) Ø 1.0 - 1.2 mm (0.039 - 0.045")

STANDARD DIAMETERS

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec) Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

\*Measurement technique is the carrier gas method according to AWS and ISO

#### MATERIALS TO BE WELDED \*)

| Weather resistant steels     | CuNi-alloyed steels | S235JRW - S355JRW; 9CrNiCuP3-2-4, A 572, A 588 oder A 709 Gr 50W |
|------------------------------|---------------------|------------------------------------------------------------------|
| Unalloyed structural steels  | Rel ≤ 355 MPa       | S185 - S355, A 106 Gr.B, A 333 Gr.6                              |
| Boiler steels                | Rel ≤ 355 MPa       | P235GH - P355GH                                                  |
| Pipe steels                  | Rel ≤ 460 MPa       | P235T1/T2 - P460NL2; L210 - L445MB                               |
| Fine grain structural steels | Rel ≤ 460 MPa       | S235 - S460QL1                                                   |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 0.7 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.2   | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.7   | Chromium (Cr)   | 0.5 |
| Sulphur (S)    | 0.015 | Copper (Cu)     | 0.5 |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO2)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 630 (91)                 | 550 - 680 (80 - 99)         |
| Yield strength Rp0.2 | 550 (80)                 | > 470 (68)                  |
| Expansion A5         | 25%                      | 22%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -20° C           | 100 (74)                    | > 47 (35)                      |
| -40° C           | 70 (52)                     | > 47 (35)                      |

## MEGAFIL® 781 R



AWS A5.29: E81T1-G H4

AWS A5.36: E81T1-M21A4-G-H4 EN ISO 17632-A: T 46 4 Z P M 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- · Extremely low diffusible hydrogen weld deposit
- · Low fumes and spatter
- · Easy slag removal
- Able to bridge poor fit-up without burn-through
- Good impact toughness
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Excellent all position welding
- · Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- · Root welding with ceramic backing
- · Automatic root welding with ceramic backing

- **APPLICATIONS** · Weather resistant steels
- · Steel structures
- Offshore structures
- · Non-alloy and fine grain steels
- · General fabrication
- · Pipelines
- · Single and multi-pass welding
- · Automatic and mechanized welding

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

**SHIELDING GAS** 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.2 - 1.6 mm (0.045 - 1/16")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Weather resistant steels     | CuNi-alloyed steels | S235JRW - S355JRW; 9CrNiCuP3-2-4, A 572, A 588 oder A 709 Gr 50W |
|------------------------------|---------------------|------------------------------------------------------------------|
| Unalloyed structural steels  | Rel ≤ 355 MPa       | S185 - S355, A 106 Gr.B, A 333 Gr.6                              |
| Boiler steels                | Rel ≤ 355 MPa       | P235GH - P355GH                                                  |
| Pipe steels                  | Rel ≤ 460 MPa       | P235T1/T2 - P460NL2; L210 - L445MB                               |
| Fine grain structural steels | Rel ≤ 460 MPa       | S235 - S460QL1                                                   |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 1.0 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.3   | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 | Copper (Cu)     | 0.5 |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 620 (90)                 | 550 - 680 (80 - 99)         |
| Yield strength Rp0.2 | 570 (83)                 | > 460 (67)                  |
| Expansion A5         | 24%                      | 22%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -20° C           | 110 (81)                    | > 47 (35)                      |
| -40° C           | 80 (59)                     | > 47 (35)                      |

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 940 M



AWS A5.36: E91T15-M21A8-K7-H4

EN ISO 18276-A: T 55 6 Mn2,5Ni M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

**STORAGE** 

- · Extremely low diffusible hydrogen weld deposit
- · Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

#### **BENEFITS**

- BWB-WIWEB Approval
- · CTOD tested -40°C
- · Minimizes risk of hydrogen-induced cracking
- · No re-drying
- · Suitable for robot applications
- · Reduces clean-up time, improves productivity
- · Root welding without any backing
- · Automatic root welding possible

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

**RE-DRYING** 

Not required due to seamless wire design The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          | Rel ≤ 550 MPa | 15NiCrMo10-6, G19NiCrMo12-6 (HY80)    |
|------------------------------|---------------|---------------------------------------|
| Pipe steels                  | Rel ≤ 550 MPa | P235T1/T2 - P460N - L2; L210 - L550MB |
| Fine grain structural steels | Rel ≤ 550 MPa | S255(NL 1/2) - S550(QL /1)            |
| Steels to API-standard       | Rel ≤ 550 MPa | up to X80                             |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 2.2 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.4   | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.6   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.010 |                 |     |
| Phosphorus (P) | 0.010 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 690 (100)                | 640 - 780 (93 - 113)        |
| Yield strength Rp0.2 | 600 (87)                 | > 550 (80)                  |
| Expansion A5         | 23%                      | 18%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 120 (89)                    | > 47 (35)                      |
| -60° C           | 100 (74)                    | > 47 (35)                      |

**APPROVALS: BWB-WIWEB** 

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 610 M



AWS A5.36: E101T15-M21A8-K2-H4

EN ISO 18276-A: T 62 6 Mn1Ni M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

#### · Extremely low diffusible hydrogen weld deposit

- · Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimizes risk of hydrogen-induced cracking
- · No re-drying
- Suitable for robot applications
- · Reduces clean-up time, improves productivity
- · Root welding without any backing
- · Automatic root welding possible

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

**SHIELDING GAS** 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.0 - 1.2 mm (0.039 - 0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Unalloyed structural steels  | Rel ≤ 620 MPa | A 517, A537                  |
|------------------------------|---------------|------------------------------|
| Boiler steels                | Rel ≤ 620 MPa | P500GH - P620GH              |
| Pipe steels                  | Rel ≤ 620 MPa | P500T1/T2 - P620NL2 - L620MB |
| Fine grain structural steels | Rel ≤ 620 MPa | S500 - S620QL1               |
| Steels to API-standard       | Rel ≤ 620 MPa | up to X90                    |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 1.1   |
|----------------|-------|-----------------|-------|
| Manganese (Mn) | 1.6   | Molybdenum (Mo) | < 0.2 |
| Silicon (Si)   | 0.6   | Chromium (Cr)   | -     |
| Sulphur (S)    | 0.015 |                 |       |
| Phosphorus (P) | 0.015 |                 |       |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 750 (109)                | 690 - 830 (100 - 120)       |
| Yield strength Rp0.2 | 670 (97)                 | > 620 (90)                  |
| Expansion A5         | 21%                      | 18%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 110 (81)                    | > 47 (35)                      |
| -60° C           | 80 (59)                     | > 47 (35)                      |

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 620 M



AWS A5.36: E101T15-M21A8-K2-H4

EN ISO 18276-A: T 62 6 Mn1,5Ni M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- · Extremely low diffusible hydrogen weld deposit
- · Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimizes risk of hydrogen-induced cracking
- · No re-drying
- Suitable for robot applications
- · Reduces clean-up time, improves productivity
- · Root welding without any backing
- · Automatic root welding possible

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Unalloyed structural steels  | Rel ≤ 620 MPa | A 517, A 537                 |
|------------------------------|---------------|------------------------------|
| Boiler steels                | Rel ≤ 620 MPa | P500GH - P620GH              |
| Pipe steels                  | Rel ≤ 620 MPa | P500T1/T2 - P620NL2 - L620MB |
| Fine grain structural steels | Rel ≤ 620 MPa | S500 - S620QL1               |
| Steels to API-standard       | Rel ≤ 620 MPa | up to X90                    |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 1.7   |
|----------------|-------|-----------------|-------|
| Manganese (Mn) | 1.4   | Molybdenum (Mo) | < 0,2 |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -     |
| Sulphur (S)    | 0.015 |                 |       |
| Phosphorus (P) | 0.015 |                 |       |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 750 (109)                | 690 - 890 (100 - 129)       |
| Yield strength Rp0.2 | 670 (97)                 | > 620 (90)                  |
| Expansion A5         | 21%                      | 18%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 110 (81)                    | > 47 (35)                      |
| -60° C           | 80 (59)                     | > 47 (35)                      |

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

### MEGAFIL® 742 M



AWS A5.28: E110C-K4 H4

AWS A5.36: E111T15-M21A8-K4-H4

EN ISO 18276-A: T 69 6 Mn2NiCrMo M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- Extremely low diffusible hydrogen weld deposit
- · Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

- · BWB-WIWEB Approval
- · Minimized risk of hydrogen-induced cracking
- No re-drying
- · Suitable for robot applications
- · Reduces clean-up time, improves productivity
- · Root welding without any backing
- · Automatic root welding possible

- **APPLICATIONS**
- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.0 - 1.2 mm (0.039 - 0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Unalloyed structural steels  | Rel ≤ 690 MPa | S620 - S690, A 106, A 600              |
|------------------------------|---------------|----------------------------------------|
| Boiler steels                | Rel ≤ 690 MPa | P620GH - P620GH up to A517; A537; A625 |
| Pipe steels                  | Rel ≤ 690 MPa | P620 - P690                            |
| Fine grain structural steels | Rel ≤ 690 MPa | S620 - S620QLI up to A 625             |
| Steels to API-standard       | Rel ≤ 690 MPa | X70 - X100 / HY100                     |
|                              |               |                                        |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Nickel (Ni)     | 0.05  | Nickel (Ni)     | 2.2 |
|-----------------|-------|-----------------|-----|
| Molybdenum (Mo) | 1.6   | Molybdenum (Mo) | 0.5 |
| Chromium (Cr)   | 0.4   | Chromium (Cr)   | 0.5 |
| Schwefel (S)    | 0.015 |                 |     |
| Phosphor (P)    | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi)                    | ISO Specification MPa (ksi) |
|----------------------|---------------------------------------------|-----------------------------|
| Tensile Strength Rm  | 820 (119) (with due regard of the 8/5 time) | 770 - 940 (112 - 136)       |
| Yield strength Rp0.2 | 750 (109) (with due regard of the 8/5 time) | > 690 (100)                 |
| Expansion A5         | 20%                                         | 17%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 120 (89)                    | > 69 (51)                      |
| -60° C           | 90 (66)                     | > 69 (51)                      |

APPROVALS: TÜV, LR, DNV-GL, ABS, BV, BWB-WIWEB

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 1100 M



AWS A5.28: ~ E120C-K4 H4

AWS A5.36: E131T15-M21A4-K4-H4

EN ISO 18276-A: T 89 4 Mn2NiCrMo M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

#### · Extremely low diffusible hydrogen weld deposit

- · Good reignition characteristics
- · Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- Suitable for robot applications
- · Reduces clean-up time, improves productivity
- Root welding without backing
- · Automatic root welding possible

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| TM pipesteels                | Rel ≤ 890 MPa | up to S890QL1   |
|------------------------------|---------------|-----------------|
| Pipe steels                  | Rel ≤ 890 MPa | X120            |
| Fine grain structural steels | Rel ≤ 890 MPa | S890 - S1100QL1 |
| ASTM                         | Rel ≤ 890 MPa | A517            |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.07  | Nickel (Ni)     | 2.6 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.5   | Molybdenum (Mo) | 0.6 |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | 0.6 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi)                     | ISO Specification MPa (ksi) |
|----------------------|----------------------------------------------|-----------------------------|
| Tensile Strength Rm  | 1050 (152) (with due regard of the 8/5 time) | 940 - 1040 (136 - 151)      |
| Yield strength Rp0.2 | 1000 (145) (with due regard of the 8/5 time) | > 890 (129)                 |
| Expansion A5         | 17%                                          | 15%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -20° C           | 80 (59)                     | > 47 (35)                      |
| -40° C           | 60 (44)                     | > 47 (35)                      |

APPROVALS: TÜV

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 550 R



AWS A5.29: M21: E91T1-K2M-J H4 AWS A5.36: M21: E91T1-M21A8-K2-H4

EN ISO 18276-A: M21: T 55 6 Mn1,5Ni P M21 1 H5

CO<sub>2</sub>: E91T1-K2C-J H4 CO<sub>3</sub>: E91T1-C1A8-K2-H4

CO<sub>2</sub>: T 55 6 Mn1,5Ni P C1 1 H5

**WELDING POSITIONS:** 







#### **FEATURES BENEFITS**

- Extremely low diffusible hydrogen weld deposit
- · Low fumes and spatter
- · Easy slag removal
- Able to bridge poor fit-up without burn-through
- Good impact toughness
- · Virtually no slag coverage
- · Smooth arc characteristic

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Excellent all position welding
- Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- · Root welding with ceramic backing
- · Automatic root welding with ceramic backing
- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); 100% Carbon Dioxide (CO<sub>2</sub>) possible;

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 46                       |
|------------------------------|---------------|----------------------------------------------|
| Unalloyed structural steels  | Rel ≤ 550 MPa | S185 - S550, A 106 Gr.B, A 333 Gr.6          |
| Boiler steels                | Rel ≤ 550 MPa | P235GH - P550GH bis A516; A537; A455         |
| Pipe steels                  | Rel ≤ 550 MPa | P235T1/T2 - P550NL2; L210 - L550MB bis A 572 |
| Fine grain structural steels | Rel ≤ 550 MPa | S235 - S550QL1 bis A 572                     |
| Steels to API-standard       | Rel ≤ 550 MPa | X42 - X80                                    |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.08  | Nickel (Ni)     | 1.5   |
|----------------|-------|-----------------|-------|
| Manganese (Mn) | 1.5   | Molybdenum (Mo) | < 0.2 |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -     |
| Sulphur (S)    | 0.015 |                 |       |
| Phosphorus (P) | 0.015 |                 |       |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 700 (102)                | 640 - 820 (93 - 119)        |
| Yield strength Rp0.2 | 620 (90)                 | > 550 (80)                  |
| Expansion A5         | 24%                      | 18%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO, and 100 % CO,)

| Mechanical Tests | Typical v                    | alues [J] (ft.lbf)   | ISO Specif                   | ication [J] (ft.lbf) |
|------------------|------------------------------|----------------------|------------------------------|----------------------|
|                  | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> | 82% Ar / 18% CO <sub>2</sub> | 100% CO <sub>2</sub> |
| -40° C           | 120 (89)                     |                      | > 55 (41)                    |                      |
| -60° C           | 90 (66)                      | 80 J                 | > 55 (41)                    | > 47 J               |

APPROVALS: LR, DNV, ABS, DNV-GL

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 610 R



AWS A5.36: E101T1-M21A4-K2-H4 EN ISO 18276-A: T 62 4 Mn1Ni P M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- Extremely low diffusible hydrogen weld deposit
- · Low fumes and spatter
- · Easy slag removal
- · Able to bridge poor fit-up without burn-through
- · Good impact toughness
- · Virtually no slag coverage
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Excellent all position welding
- · Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- Root welding with ceramic backing
- · Automatic root welding with ceramic backing

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipeline
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>);

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Rel ≤ 620 MPa | A517, A537                                      |
|---------------|-------------------------------------------------|
| Rel ≤ 620 MPa | P500GH - P620GH                                 |
| Rel ≤ 620 MPa | P500T1/T2 - P620NL2 - L620MB                    |
| Rel ≤ 620 MPa | S500 - S620QL1                                  |
| Rel ≤ 620 MPa | up to X90                                       |
|               | Rel ≤ 620 MPa<br>Rel ≤ 620 MPa<br>Rel ≤ 620 MPa |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.08  | Nickel (Ni)     | 1.1   |
|----------------|-------|-----------------|-------|
| Manganese (Mn) | 1.6   | Molybdenum (Mo) | < 0.2 |
| Silicon (Si)   | 0.6   | Chromium (Cr)   | -     |
| Sulphur (S)    | 0.015 |                 |       |
| Phosphorus (P) | 0.015 |                 |       |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO.)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 750 (109)                | 690 - 830 (100 - 120)       |
| Yield strength Rp0.2 | 670 (97)                 | > 620 (90)                  |
| Expansion A5         | 21%                      | 18%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -20° C           | 110 (81)                    | > 47 (35)                      |
| -40° C           | 80 (59)                     | > 47 (35)                      |
| -60° C           | 55 (40)                     | > 47 (35)                      |

APPROVALS: TÜV

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

### MEGAFIL® 620 R



AWS A5.29: E101T1-K2M H4

AWS A5.36: E101T1-M21A4-K2-H4

EN ISO 18276-A: T 62 4 Mn1,5Ni P M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- Extremely low diffusible hydrogen weld deposit
- · Low fumes and spatter
- · Easy slag removal
- Able to bridge poor fit-up without burn-through
- Good impact toughness
- · Virtually no slag coverage
- · Smooth arc characteristic

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- · Excellent all position welding
- · Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- · Root welding with ceramic backing
- · Automatic root welding with ceramic backing
- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- · Offshore structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 36       |
|------------------------------|---------------|------------------------------|
| Unalloyed structural steels  | Rel ≤ 620 MPa | A517, A537                   |
| Boiler steels                | Rel ≤ 620 MPa | P500GH - P620GH              |
| Pipe steels                  | Rel ≤ 620 MPa | P500T1/T2 - P620NL2 - L620MB |
| Fine grain structural steels | Rel ≤ 620 MPa | S500 - S620QL1               |
| Steels to API-standard       | Rel ≤ 620 MPa | up to X90                    |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.08  | Nickel (Ni)     | 1.7   |
|----------------|-------|-----------------|-------|
| Manganese (Mn) | 1.4   | Molybdenum (Mo) | < 0.2 |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -     |
| Sulphur (S)    | 0.015 |                 |       |
| Phosphorus (P) | 0.015 |                 |       |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 750 (109)                | 690 - 820 (100 - 119)       |
| Yield strength Rp0.2 | 670 (97)                 | > 620 (90)                  |
| Expansion A5         | 21%                      | 18%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -20° C           | 110 (81)                    | > 47 (35)                      |
| -40° C           | 80 (59)                     | > 47 (35)                      |
| -60° C           | 55 (40)                     | > 47 (35)                      |

APPROVALS: LR, ABS

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 690 R



AWS A5.36: E111T1-M21A4-G-H4 EN ISO 18276-A: T 69 6 Z P M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- · Extremely low diffusible hydrogen weld deposit
- · Low fumes and spatter
- · Easy slag removal
- · Able to bridge poor fit-up without burn-through
- Good impact toughness
- · Virtually no slag coverage
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimized risk of hydrogen-induced cracking
- · No re-drying
- Excellent all position welding
- Resists cracking in severe applications
- · Reduces clean-up time, minimizes risk of inclusions
- · Increases productivity, reduces part rework/ rejection
- Root welding with ceramic backing
- · Automatic root welding with ceramic backing

#### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- Non-alloy and fine grain steels
- Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) Ø 1.2 mm (0.045")

STANDARD DIAMETERS

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Unalloyed structural steels  | Rel ≤ 690 MPa | S620 - S690, A 106, A 600              |  |
|------------------------------|---------------|----------------------------------------|--|
| Boiler steels                | Rel ≤ 690 MPa | P620GH - P690GH up to A517; A537; A625 |  |
| Pipe steels                  | Rel ≤ 690 MPa | P620T1/T2 - P690NL2 up to A 625        |  |
| Fine grain structural steels | Rel ≤ 690 MPa | S620 - S629QL1 up to A 625             |  |
| Steels to API-standard       | Rel ≤ 690 MPa | X70 - X100 / HY100                     |  |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.08  | Nickel (Ni)     | 2.0  |
|----------------|-------|-----------------|------|
| Manganese (Mn) | 1.7   | Molybdenum (Mo) | 0.15 |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -    |
| Sulphur (S)    | 0.015 |                 |      |
| Phosphorus (P) | 0.015 |                 |      |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi)                        | ISO Specification MPa (ksi) |
|----------------------|-------------------------------------------------|-----------------------------|
| Tensile Strength Rm  | 820 MPa (119) (with due regard of the 8/5 time) | 770 - 940 MPa (112 - 136)   |
| Yield strength Rp0.2 | 750 MPa (109) (with due regard of the 8/5 time) | > 690 MPa (100)             |
| Expansion A5         | 18%                                             | 17%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 80 (59)                     | > 69 (51)                      |
| -60° C           | 60 (44)                     | > 47 (35)                      |

APPROVALS: BV, LR, ABS, DNV-GL, TÜV

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 610 B



AWS A5.36: E100T5-M21A8-K2-H4

EN ISO 18276-A: T 62 6 Mn1Ni B M21 3 H5

#### **WELDING POSITIONS:**



#### **FEATURES BENEFITS APPLICATIONS**

- · Basic slag system
- · Low hydrogen weld deposit
- Ideal for use of short arc and spray arc
- Excellent low temperature impacts
- · Low spatter loss

**STORAGE** 

· Easy slag removal

- · Minimizes risk of hydrogen-induced cracking
- · No re-drying
- Provides increased toughness
- · Automatic and mechanized welding
- · Steel structures
- · Heavy fabrication
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- Single and multi-pass welding
- Earthmoving equipment

**WIRE TYPE** Gas shielded basic flux-cored wire

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>) **SHIELDING GAS** 

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

**RE-DRYING** 

Not required due to seamless wire design

The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

\*Measurement technique is the carrier gas method according to AWS and ISO

#### MATERIALS TO BE WELDED \*)

| Unalloyed structural steels  | Rel ≤ 620 MPa | A 517, A537                  |
|------------------------------|---------------|------------------------------|
| Boiler steels                | Rel ≤ 620 MPa | P500GH - P620GH              |
| Pipe steels                  | Rel ≤ 620 MPa | P500T1/T2 - P620NL2 - L620MB |
| Fine grain structural steels | Rel ≤ 620 MPa | S500 - S620QL1               |
| Steels to API-standard       | Rel ≤ 620 MPa | up to X90                    |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 1.1   |
|----------------|-------|-----------------|-------|
| Manganese (Mn) | 1.6   | Molybdenum (Mo) | < 0.2 |
| Silicon (Si)   | 0.6   | Chromium (Cr)   | -     |
| Sulphur (S)    | 0.015 |                 |       |
| Phosphorus (P) | 0.015 |                 |       |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|----------------------|--------------------------|-----------------------------|
| Tensile Strength Rm  | 750 (109)                | 690 - 830 (100 - 120)       |
| Yield strength Rp0.2 | 670 (97)                 | > 620 (90)                  |
| Expansion A5         | 22%                      | 18%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 120 (89)                    | > 47 (35)                      |
| -60° C           | 90 (66)                     | > 47 (35)                      |

APPROVALS: TÜV

## MEGAFIL® 742 B



AWS A5.29: E110T5-K4M H4 AWS A5.36: E110T5-M21A8-K4-H4

EN ISO 18276-A: T 69 6 Mn2NiCrMo B M21 3 H5

#### **WELDING POSITIONS:**







#### **FEATURES**

#### **BENEFITS**

#### · Minimizes risk of hydrogen-induced cracking

- · No re-drying
- · Provides increased toughness
- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- · Heavy fabrication
- · Non-alloy and fine grain steels
- · Vessels
- General fabrication
- · Single and multi-pass welding
- · Earthmoving equipment

 Ideal for use of short arc and spray arc · Excellent low temperature impacts

· Low spatter loss · Easy slag removal

· Basic slag system

· Low hydrogen weld deposit

**WIRE TYPE** Gas shielded basic flux-cored wire

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>) SHIELDING GAS

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

**RE-DRYING** 

Not required due to seamless wire design

**STORAGE** 

The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

\*Measurement technique is the carrier gas method according to AWS and ISO

#### MATERIALS TO BE WELDED \*)

| Unalloyed structural steels  | Rel ≤ 690 MPa | S620 - S690, A 106, A 600              |
|------------------------------|---------------|----------------------------------------|
| Boiler steels                | Rel ≤ 690 MPa | P620GH - P690GH up to A517; A537; A625 |
| Pipe steels                  | Rel ≤ 690 MPa | P6205T1/T2 - P690NL2; up to A 625      |
| Fine grain structural steels | Rel ≤ 690 MPa | S620 - S690QL1 up to A 625             |
| Steels to API-standard       | Rel ≤ 690 MPa | X70 - X100 / HY100                     |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 2.2 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.6   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.4   | Chromium (Cr)   | 0.5 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi)                    | ISO Specification MPa (ksi) |
|----------------------|---------------------------------------------|-----------------------------|
| Tensile Strength Rm  | 820 (119) (with due regard of the 8/5 time) | 770 - 900 (112 - 131)       |
| Yield strength Rp0.2 | 750 (109) (with due regard of the 8/5 time) | > 690 (100)                 |
| Expansion A5         | 20%                                         | 17%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -40° C           | 120 (89)                    | > 69 (51)                      |
| -60° C           | 90 (66)                     | > 69 (51)                      |

APPROVALS: TÜV, DB, LR, BV, ABS, DNV-GL

## MEGAFIL® 745 B



AWS A5.36: E130T5-M21A4-K4-H4

EN ISO 18276-A: T 89 4 Mn2Ni1CrMo B M21 3 H5

#### **WELDING POSITIONS:**



#### **FEATURES BENEFITS**

- · Basic slag system
- · Low hydrogen weld deposit
- Ideal for use of short arc and spray arc
- Excellent low temperature impacts
- Low spatter loss
- · Easy slag removal

- · Minimizes risk of hydrogen-induced cracking
- · No re-drying
- Provides increased toughness
- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- · Heavy fabrication
- · Non-alloy and fine grain steels
- · Vessels
- · General fabrication
- Single and multi-pass welding
- Earthmoving equipment

**WIRE TYPE** Gas shielded basic flux-cored wire

**SHIELDING GAS** 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.2 - 1.6 mm (0.039 - 1/16")

TYPICAL DIFFUSIBLE HYDROGEN\*

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

**RE-DRYING** 

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| TM pipesteels                | Rel ≤ 890 MPa | up to S890QL1   |
|------------------------------|---------------|-----------------|
| Pipe steels                  | Rel ≤ 890 MPa | to X120         |
| Fine grain structural steels | Rel ≤ 890 MPa | S890 - S1100QL1 |
| Steels to API-standard       | Rel ≤ 890 MPa | A517            |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.05  | Nickel (Ni)     | 1.8 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.6   | Molybdenum (Mo) | 0.6 |
| Silicon (Si)   | 0.4   | Chromium (Cr)   | 0.5 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests     | Typical values MPa (ksi)                     | ISO Specification MPa (ksi) |
|----------------------|----------------------------------------------|-----------------------------|
| Tensile Strength Rm  | 1050 (152) (with due regard of the 8/5 time) | 940 - 1180 (136 - 171)      |
| Yield strength Rp0.2 | 1000 (145) (with due regard of the 8/5 time) | > 890 (129)                 |
| Expansion A5         | 17%                                          | 15%                         |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| -20° C           | 80 (59)                     | > 47 (35)                      |
| -40° C           | 70 (52)                     | > 47 (35)                      |

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## **MEGAFIL® 807 M**



AWS A5.28: E110C-G H4 / ~E120C-G H4

AWS A5.36: E111T15-M21P0-G-H4 / E131T15-M21A0-G-H4 EN ISO 18276-A: T 69 0 Z M M21 1 H5 / T 89 0 Z M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

#### · Extremely low diffusible hydrogen weld deposit

- · Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate and efficiencies
- · Virtually no slag coverage
- · Smooth arc characteristic

#### **BENEFITS**

- · Heat treatable weld metal
- · Minimizes risk of hydrogen-induced cracking
- · No re-drying
- · Suitable for robot applications
- · Reduces clean-up time, improves productivity
- · Root welding without any backing
- Automatic root welding automatically possible

### **APPLICATIONS**

- · Automatic and mechanized welding
- · Steel structures
- · Offshore structures
- · Pipelines
- Non-alloy and fine grain steels
- Vessels
- · General fabrication
- · Heavy equipment
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec) Not required due to seamless wire design

**RE-DRYING STORAGE** 

The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

\*Measurement technique is the carrier gas method according to AWS and ISO

#### MATERIALS TO BE WELDED \*)

| TM pipesteels                                         | Rel ≤ 890 MPa | up to S890QL1                                                |
|-------------------------------------------------------|---------------|--------------------------------------------------------------|
| Pipe steels                                           | Rel ≤ 890 MPa | up to X120                                                   |
| Fine grain structural steels                          | Rel ≤ 890 MPa | S890 - S1100QL1                                              |
| Steels to API-standard                                | Rel ≤ 890 MPa | A517                                                         |
| High strength fine grain structural steels (tempered) |               | 25CrMo4; 34CrMo4; 28NiCrMo5-5; 42 CrMo4 typical ASTM A 829 M |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel ( Ni )   | 2.3 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.7   | Molybdenum (Mo) | 0.6 |
| Silicon (Si)   | 0.6   | Chromium (Cr)   | 0.6 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO2)

| Mechanical tests     | Тур              | pical values MPa (ksi)                            | ISO Specifica          | ation MPa (ksi)          |
|----------------------|------------------|---------------------------------------------------|------------------------|--------------------------|
|                      | as welded / heat | as welded / heat treated 680°C (1256°F) / 120 min |                        | 680°C (1256°F) / 120 min |
| Tensile Strength Rm  | 980 (142)        | 900 (130)                                         | 940 - 1180 (136 - 171) | 800 - 950 (116 - 138)    |
| Yield strength Rp0.2 | 930 (135)        | 740 (107)                                         | > 890 (129)            | > 700 (102)              |
| Expansion A5         | 17%              | 20%                                               | 15%                    | 15%                      |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |
|------------------|-----------------------------|--------------------------------|
| 0° C             | 80 (59)                     | > 47 (35)                      |
| -20° C           | 60 (44)                     | > 27 (20)                      |

## MEGAFIL® 235 M



AWS A5.28: E80C-G H4

AWS A5.36: E81T15-M21P4-A1-HA EN ISO 17634-A: T Mo M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES BENEFITS APPLICATIONS**

- · Extremely low diffusible hydrogen weld deposit
- · Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- · High deposition rate
- · Virtually no slag coverage
- · Smooth arc characteristic

- · Minimizes risk of hydrogen-induced cracking
- Suitable for robot applications
- · Automatic root welding possible
- · Root welding without any backing
- · Improved efficiency
- · Reduced cleaning time
- · Easy handling

- · Automatic and mechanized welding
- · Steel structures
- · Pipelines
- · Non-alloy and fine grain steels
- · Vessels (Mo steels up to 500° C (932° F))
- · General fabrication
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.0 - 1.6 mm (0.039 - 1/16")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

**RE-DRYING** 

Not required due to seamless wire design

**STORAGE** 

The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Shipbuilding steels          |               | A, B, D, AH 32 - EH 36              |
|------------------------------|---------------|-------------------------------------|
| Unalloyed structural steels  | Rel ≤ 355 MPa | S185 - S355, A 106 Gr.B, A 333 Gr.6 |
| Boiler steels                | Rel ≤ 355 MPa | P235GH - P355GH, 16Mo3              |
| Pipe steels                  | Rel ≤ 460 MPa | P235T1/T2 - P460NL2; L210 - L445MB  |
| Fine grain structural steels | Rel ≤ 460 MPa | S235 - S460QL1                      |
| Steels to API-standard       | Rel ≤ 460 MPa | X42 - X70                           |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.07  | Nickel (Ni)     | -   |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.1   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.7   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |  |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|--|
| Tensile Strength Rm                                                           | 600 (87)                 | 550 - 690 (80 - 100)        |  |
| Yield strength Rp0.2                                                          | 520 (75)                 | >470 (68)                   |  |
| Expansion A5 26% 22%                                                          |                          |                             |  |
| The specified values apply to the stress-relieved condition (600° C / 60 min) |                          |                             |  |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| -20° C                                                                        | 120 (89)                    | > 47 (35)                      |  |
| -40° C                                                                        | 100 (74)                    | > 47 (35)                      |  |
| The specified values apply to the stress-relieved condition (600° C / 60 min) |                             |                                |  |

APPROVALS: TÜV. DB

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## **MEGAFIL® P36 M**



AWS A5.36: E91T15-M21P4-K1-H4 EN ISO 17634-A: T Z M M21 1 H5

EN ISO 18276-A: T 55 4 1NiMo M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

- Extremely low diffusible hydrogen weld deposit
- Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- High deposition rate
- · Virtually no slag coverage
- · Smooth arc characteristic

- · Minimizes risk of hydrogen-induced cracking
- Suitable for robot applications
- Automatic root welding possible
- · Root welding without any backing
- · Improved efficiency
- · Reduced cleaning time
- Easy handling

- · Automatic and mechanized welding
- · Steel structures

**APPLICATIONS** 

- Pipelines
- · High-grade structural steels
- · Vessels (Mo steels up to 500° C (932° F))
- · General fabrication
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

TYPICAL DIFFUSIBLE HYDROGEN\*

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| High-grade structural steels                                                                                                                                                                                                                  | Rel ≤ 540 MPa | 15NiCuMoNb5, 20MnMoNi4-5, 11NiMoV53, 17MnMoV6-4 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|
| *) The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements. |               |                                                 |

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.07  | Nickel (Ni)     | 1.0 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.3   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.012 |                 |     |
| Phosphorus (P) | 0.010 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |  |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|--|
| Tensile Strength Rm                                                           | 650 (94)                 | 640 - 760 (93 - 110)        |  |
| Yield strength Rp0.2                                                          | 580 (84)                 | > 550 (80)                  |  |
| Expansion A5 23% 18%                                                          |                          |                             |  |
| The specified values apply to the stress-relieved condition (620° C / 60 min) |                          |                             |  |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                              | Timing values [1] (ft lbf)  | ISO Specification [J] (ft.lbf) |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| Wechanical lests                                                              | Typical values [J] (ft.lbf) | 150 Specification [J] (It.ibi) |  |
| -20° C                                                                        | 120 (89)                    | > 47 (35)                      |  |
| -40° C                                                                        | 80 (59)                     | > 47 (35)                      |  |
| The specified values apply to the stress-relieved condition (620° C / 60 min) |                             |                                |  |

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 236 M



AWS A5.28: E80C-B2 H4

AWS A5.36: E81T15-M21P4-B2-H4 EN ISO 17634-A: T CrMo1 M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES APPLICATIONS BENEFITS**

- · Extremely low diffusible hydrogen weld deposit
- · Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- · High deposition rate
- · Virtually no slag coverage
- · Smooth arc characteristic

- · Minimizes risk of hydrogen-induced cracking
- · Suitable for robot applications
- · Automatic root welding possible
- · Root-welding without any backing
- · Improved efficiency
- · Reduced cleaning time
- · Easy handling

- · Automatic and mechanized welding
- · Steel structures
- Pipelines
- · Cast steels
- · Steam boilers and turbines (Mo steels up to 550° C (1022° F))
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

**SHIELDING GAS** 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.0 - 1.2 mm (0.039 - 0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

|   | Boiler steels                                                                              | Rel ≤ 460 MPa | 13CrMo4-5              |  |
|---|--------------------------------------------------------------------------------------------|---------------|------------------------|--|
|   | Cast steels                                                                                | Rel ≤ 460 MPa | G17CrMo5-5, G22CrMo5-4 |  |
| Ī | Similar alloyed heat treatable steels and similar alloyed cementation and nitrited steels. |               |                        |  |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.05  | Nickel (Ni )    | -   |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.0   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.3   | Chromium (Cr)   | 1.1 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|
| Tensile Strength Rm                                                           | 620 (90)                 | 550 - 740 (80 - 107)        |
| Yield strength Rp0.2                                                          | 540 (78)                 | > 470 (68)                  |
| Expansion A5                                                                  | 24%                      | 20%                         |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                          |                             |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                             | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |  |
|------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|--|
| RT                                                                           | 150 (110)                   | > 47 (35)                      |  |  |
| -40° C                                                                       | 55 (41)                     | > 47 (35)                      |  |  |
| The specified values apply to the stress-relieved condition (690° C / 60min) |                             |                                |  |  |

APPROVALS: TÜV

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 237 M



AWS A5.28: E90C-B3 H4

AWS A5.36: E91T15-M21P0-B3-H4 EN ISO 17634-A: T CrMo2 M M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES BENEFITS**

- Extremely low diffusible hydrogen weld deposit
- Good reignition characteristics
- Ideal for use of short arc and spray arc
- Excellent gap bridging for root welding
- · High deposition rate
- · Virtually no slag coverage
- · Smooth arc characteristic

- · Minimizes risk of hydrogen-induced cracking
- Suitable for robot applications
- Automatic root welding possible
- · Root-welding without any backing
- · Improved efficiency
- · Reduced cleaning time
- Easy handling

- · Automatic and mechanized welding
- · Construction of containers
- · Pipelines

**APPLICATIONS** 

- Steam boilers and turbines (2 ¼ Cr1Mo steels)
- · Machine-building
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

TYPICAL DIFFUSIBLE HYDROGEN\*

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec) **RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| boiler steels                                                                                                                                           | Rel ≤ 540 MPa | 10CrMo9-10, 12CrMo9-10 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|--|
| *) The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding |               |                        |  |
| consumable should follow the specific mechanical strength and toughness requirements.                                                                   |               |                        |  |

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.07  | Nickel (Ni)     | -   |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.0   | Molybdenum (Mo) | 1.1 |
| Silicon (Si)   | 0.3   | Chromium (Cr)   | 2.3 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|
| Tensile Strength Rm                                                           | 650 (94)                 | 620 - 760 (90 - 110)        |
| Yield strength Rp0.2                                                          | 560 (81)                 | > 540 (78)                  |
| Expansion A5                                                                  | 22%                      | 18%                         |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                          |                             |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|--|
| RT                                                                            | 130 (96)                    | > 47 (35)                      |  |  |
| -20° C                                                                        | 90 (66)                     | > 47 (35)                      |  |  |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                             |                                |  |  |

APPROVALS: TÜV

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## **MEGAFIL® P5 M**



AWS A5.28: E80C-B6 H4

· Good reignition characteristics

· High deposition rate

· Virtually no slag coverage

· Smooth arc characteristic

Ideal for use of short arc and spray arc

Excellent gap bridging for root welding

AWS A5.36: E81T15-M21P0-B6-H4 EN ISO 17634-A: T CrMo5 M M21 1 H5

#### **WELDING POSITIONS:**







#### **FEATURES**

**STORAGE** 

#### **BENEFITS**

- Extremely low diffusible hydrogen weld deposit
  - · Minimizes risk of hydrogen-induced cracking
  - Suitable for robot applications
  - · Automatic root-welding possible
  - · Root-welding without any backing
  - · Improved efficiency
  - · Reduced cleaning time
  - · Easy handling

- **APPLICATIONS**
- · Automatic and mechanized welding
- Pumps and fittings
- · Creep & scale resistant steels up to 600° C (1112° F)
- · Steam turbines
- · Hydropower stations
- · Single and multi-pass welding

**WIRE TYPE** 

Gas shielded metal-cored wire

**SHIELDING GAS** 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS

Ø 1.6 mm (1/16")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

**RE-DRYING** 

Not required due to seamless wire design The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

|   | Boiler steels                                                                                                                                           | Rel ≤ 460 MPa | X12CrMo5 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| Ì | *) The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding |               |          |

consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.07  | Nickel (Ni)     | -   |  |
|----------------|-------|-----------------|-----|--|
| Manganese (Mn) | 1.0   | Molybdenum (Mo) | 0.6 |  |
| Silicon (Si)   | 0.4   | Chromium (Cr)   | 5.2 |  |
| Sulphur (S)    | 0.015 |                 |     |  |
| Phosphorus (P) | 0.015 |                 |     |  |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |  |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|--|
| Tensile Strength Rm 610 (88)                                                  |                          | 590 - 690 (86 - 100)        |  |
| Yield strength Rp0.2                                                          | 500 (73)                 | > 470 (68)                  |  |
| Expansion A5 23%                                                              |                          | 20%                         |  |
| The specified values apply to the stress-relieved condition (745° C / 60 min) |                          |                             |  |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|--|
| RT                                                                            | 100 (74)                    | > 47 (35)                      |  |  |
| The specified values apply to the stress-relieved condition (745° C / 60 min) |                             |                                |  |  |

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 825 R



AWS A5.29: E81T1-A1M H4 AWS A5.36: E81T1-M21PY-A1-H4 EN ISO 17634-A: T MoL P M21 1 H5

#### **WELDING POSITIONS:**









#### **FEATURES**

#### · Extremely low diffusible hydrogen weld deposit

- · Excellent weld puddle manipulation
- · Particularly suited for mechanized MAG welding
- · Ideal for all-position welding on ceramic backing
- · Low spatter loss
- · Easy slag removal
- · Smooth arc characteristic

#### **BENEFITS**

- · Minimizes risk of hydrogen-induced cracking
- · Efficient out-of-position welding
- · Economic production
- · High flexibility
- · No additives needed
- · Reduced cleaning time
- Easy handling

### **APPLICATIONS**

- · Mechanized welding
- · Steel construction
- Vessels (Mo steels up to 500° C (932° F))
- · Pipelines
- · Single and multi-pass welding
- · Mechanical engineering

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Boiler steels                | Rel ≤ 355 MPa | P235GH - P355GH, 16Mo3             |
|------------------------------|---------------|------------------------------------|
| Pipe steels                  | Rel ≤ 460 MPa | P235T1/T2 - P460NL2, L210 - L445MB |
| Fine grain structural steels | Rel ≤ 460 MPa | S255 - S460                        |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.07  | Nickel (Ni)     | -   |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.1   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.5   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO2)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|
| Tensile Strength Rm                                                           | 600 (87)                 | 550 - 680 (80 - 99)         |
| Yield strength Rp0.2                                                          | 520 (75)                 | > 470 (68)                  |
| Expansion A5                                                                  | 23%                      | 22%                         |
| The specified values apply to the stress-relieved condition (600° C / 60 min) |                          |                             |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| RT                                                                            | 80 (59)                     | > 47 (35)                      |  |
| The specified values apply to the stress-relieved condition (600° C / 60 min) |                             |                                |  |

APPROVALS: TÜV

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 836 R



AWS A5.29: E81T1-B2M H4 AWS A5.36: E81T1-M21PY-B2-H4

EN ISO 17634-A: T CrMo1 P M21 1 H5

#### **WELDING POSITIONS:**









#### **BENEFITS FEATURES APPLICATIONS**

- · Extremely low diffusible hydrogen weld deposit
- · Excellent weld puddle manipulation
- · Particularly suited for mechanized MAG welding
- Ideal for all-position welding on ceramic backing
- · Low spatter loss
- · Easy slag removal
- · Smooth arc characteristic

- · Minimizes risk of hydrogen-induced cracking
- · Efficient out-of-position welding
- · Economic production
- · High flexibility
- · No additives needed
- · Reduced cleaning time
- · Easy handling

- · Mechanized welding
- · Construction of containers
- · Steam boilers and turbines
- (CrMo steels up to 550° C (1022° F))
- Pipelines
- · Single and multi-pass welding
- · Mechanical engineering

**WIRE TYPE** Gas shielded rutile flux-cored wire with rapidly solidifying slag

**SHIELDING GAS** 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Boiler steels | Rel ≤ 460 MPa | 13CrMo4-5              |
|---------------|---------------|------------------------|
| Cast steels   | Rel ≤ 460 MPa | G17CrMo5-5, G22CrMo5-4 |
|               |               |                        |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.05  | Nickel (Ni)     | -   |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.0   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.3   | Chromium (Cr)   | 1.1 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |  |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|--|
| Tensile Strength Rm                                                           | 620 (90)                 | 550 - 680 (80 - 99)         |  |
| Yield strength Rp0.2                                                          | 540 (78)                 | > 470 (68)                  |  |
| Expansion A5                                                                  | 21%                      | 20%                         |  |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                          |                             |  |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| RT                                                                            | 70 (52)                     | > 47 (35)                      |  |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                             |                                |  |

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 735 B



AWS A5.29: E80T5-G H4

AWS A5.36: E80T5-M21P4-A1-H4 EN ISO 17634-A: T Mo B M21 3 H5

#### **WELDING POSITIONS:**







#### **FEATURES**

- · Extremely low diffusible hydrogen weld deposit
- · Extremely clean weld puddle
- · Ideal for repair welding
- Low spatter loss
- · Easy slag removal

#### **BENEFITS**

- · Minimizes risk of hydrogen-induced cracking
- · High reserve of toughness and crack resistance
- · High flexibility
- · No additives needed
- · Reduced cleaning time

- **APPLICATIONS** · Steel construction
- · Mechanical engineering
- $\cdot\,\,$  Vessels (Mo steels up to 500° C (932° F))
- · Pipelines
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded basic flux-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 - 1.6 mm (0.045 - 1/16")

TYPICAL DIFFUSIBLE HYDROGEN\*

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec) **RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Boiler steels                | Rel ≤ 355 MPa | P235GH - P355GH, 16Mo3             |
|------------------------------|---------------|------------------------------------|
| Pipe steels                  | Rel ≤ 460 MPa | P235T1/T2 - P460NL2; L210 - L445MB |
| Fine grain structural steels | Rel ≤ 460 MPa | S255 - S460QL1                     |
|                              |               |                                    |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.07  | Nickel (Ni)     | -   |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.1   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.3   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO2)

| Mechanical tests                                                             | Typical values MPa (ksi) | ISO Specification MPa (ksi) |  |
|------------------------------------------------------------------------------|--------------------------|-----------------------------|--|
| Tensile Strength Rm                                                          | 600 (87)                 | 550 - 680 (80 - 99)         |  |
| Yield strength Rp0.2                                                         | 520 (75)                 | > 470 (68)                  |  |
| Expansion A5                                                                 | 26%                      | 22%                         |  |
| The specified values apply to the stress-relieved condition (600° C / 60min) |                          |                             |  |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO2)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| -20° C                                                                        | 140 (103)                   | > 47 (35)                      |  |
| -40° C                                                                        | 120 (89)                    | > 47 (35)                      |  |
| The specified values apply to the stress-relieved condition (600° C / 60 min) |                             |                                |  |

APPROVALS: TÜV

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## **MEGAFIL® P36 B**



AWS A5.36: E90T5-M21P4-K1-H4 EN ISO 17634-A: T Z B M21 3 H5

EN ISO 18276-A: T 55 4 1NiMo B M21 3 H5

#### **WELDING POSITIONS:**



#### **FEATURES APPLICATIONS**

- · Extremely low diffusible hydrogen weld deposit
- · Extremely clean weld puddle
- · Ideal for repair welding
- · Low spatter loss
- · Easy slag removal

- · Minimizes risk of hydrogen-induced cracking
- · High reserve of toughness and crack resistance
- · High flexibility
- · No additives needed
- · Reduced cleaning time

- · Mechanical engineering
- · Steel construction
- · Vessels (Mo steels up to 500° C (932° F))
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded basic flux-cored wire

**SHIELDING GAS** 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**TYPICAL DIFFUSIBLE HYDROGEN\*** 

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| High-grade structural steels           | Rel ≤ 540 MPa                   | 15NiCuMoNb5, 20MnMoNi4-5, 11NiMoV53, 17MnMoV6-4                                     |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|
| *) The specified base materials are no | t complete and should only be s | seen as examples. The selection of the appropriate combination of steel and welding |

ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

consumable should follow the specific mechanical strength and toughness requirements.

| Carbon (C)     | 0.07  | Nickel (Ni)     | 1.0 |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.3   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.3   | Chromium (Cr)   | -   |
| Sulphur (S)    | 0.012 |                 |     |
| Phosphorus (P) | 0.010 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                              | Typical values MPa (ksi) | SO Specification MPa (ksi) |  |
|-------------------------------------------------------------------------------|--------------------------|----------------------------|--|
| Tensile Strength Rm                                                           | 650 (94)                 | 620 - 760 (90 - 110)       |  |
| Yield strength Rp0.2                                                          | 580 (84)                 | > 550 (80)                 |  |
| Expansion A5 24% 18%                                                          |                          |                            |  |
| The specified values apply to the stress-relieved condition (620° C / 60 min) |                          |                            |  |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| -20° C                                                                        | 120 (89)                    | > 47 (35)                      |  |
| -40° C                                                                        | 80 (59)                     | > 47 (35)                      |  |
| The specified values apply to the stress-relieved condition (620° C / 60 min) |                             |                                |  |

<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## MEGAFIL® 736 B



AWS A5.29: E80T5-B2M H4 AWS A5.36: E80T5-M21P4-B2-H4 EN ISO 17634-A: T CrMo1 B M21 3 H5 **WELDING POSITIONS:** 





#### **FEATURES**

- · Extremely low diffusible hydrogen weld deposit
- · Extremely clean weld puddle
- · Ideal for repair welding
- Low spatter loss · Easy slag removal

#### **BENEFITS**

- · Minimizes risk of hydrogen-induced cracking
- · High reserve of toughness and crack resistance
- · High flexibility
- · No additives needed
- · Reduced cleaning time

### **APPLICATIONS**

- · Construction of containers · Boiler & machinery parts
- Steam boiler and turbines
- (CrMo steels up to 550° C (1022° F))
- Pipelines
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded basic flux-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP) STANDARD DIAMETERS Ø 1.2 - 1.6 mm (0.045 - 1/16")

TYPICAL DIFFUSIBLE HYDROGEN\*

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec) Not required due to seamless wire design

**STORAGE** 

The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

\*Measurement technique is the carrier gas method according to AWS and ISO

#### MATERIALS TO BE WELDED \*)

| Boiler steels                                                                              | Rel ≤ 460 MPa | 13CrMo4-5              |  |
|--------------------------------------------------------------------------------------------|---------------|------------------------|--|
| Pipe steels                                                                                | Rel ≤ 460 MPa | G17CrMo5-5, G22CrMo5-4 |  |
| Similar alloyed heat treatable steels and similar alloyed cementation and nitrited steels. |               |                        |  |

<sup>\*)</sup> The specified base materials are not complete and should only be seen as examples. The selection of the appropriate combination of steel and welding consumable should follow the specific mechanical strength and toughness requirements.

#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

| Carbon (C)     | 0.05  | Nickel (Ni)     | -   |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.0   | Molybdenum (Mo) | 0.5 |
| Silicon (Si)   | 0.3   | Chromium (Cr)   | 1.1 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO2)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |  |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|--|
| Tensile Strength Rm                                                           | 620 (90)                 | 550 - 690 (80 - 100)        |  |
| Yield strength Rp0.2                                                          | 540 (78)                 | > 470 (68)                  |  |
| Expansion A5                                                                  | 25%                      | 20%                         |  |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                          |                             |  |

#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO2)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| RT                                                                            | 160 (118)                   | > 47 (35)                      |  |
| -40° C                                                                        | 70 (52)                     | > 47 (35)                      |  |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                             |                                |  |

APPROVALS: TÜV

## MEGAFIL® 737 B



AWS A5.29: E90T5-B3M H4 AWS A5.36: E90T5-M21P0-B3-H4

EN ISO 17634-A: T CrMo2 B M21 3 H5

#### **WELDING POSITIONS:**



#### **FEATURES BENEFITS APPLICATIONS**

- · Extremely low diffusible hydrogen weld deposit
- · Extremely clean weld puddle
- · Ideal for repair welding
- · Low spatter loss
- · Easy slag removal
- · Heat treatable weld metal

- · Minimizes risk of hydrogen-induced cracking
- · High reserve of toughness and crack resistance
- · High flexibility
- · No additives needed
- · Reduced cleaning time
- · Step cooling possible

- · Construction of containers
- · Boiler & machinery parts
- Steam boiler and turbines (2 ¼ Cr1Mo steels)
- · Pipelines
- · Single and multi-pass welding

**WIRE TYPE** Gas shielded basic flux-cored wire

**SHIELDING GAS** 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>)

Gas Flow 12-18 I/min (25-38 cfh)

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

TYPICAL DIFFUSIBLE HYDROGEN\*

**RE-DRYING** 

< 3.0 ml / 100 g; Guaranteed for the total processing time < 4.0 ml / 100 g maximum (AWS Spec)

Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### MATERIALS TO BE WELDED \*)

| Boiler steels                           | Rel ≤ 540 MPa                 | 10CrMo9-10, 12CrMo9-10                                                              |
|-----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------|
| *) The enecified base materials are not | complete and should only be s | seen as examples. The selection of the appropriate combination of steel and welding |

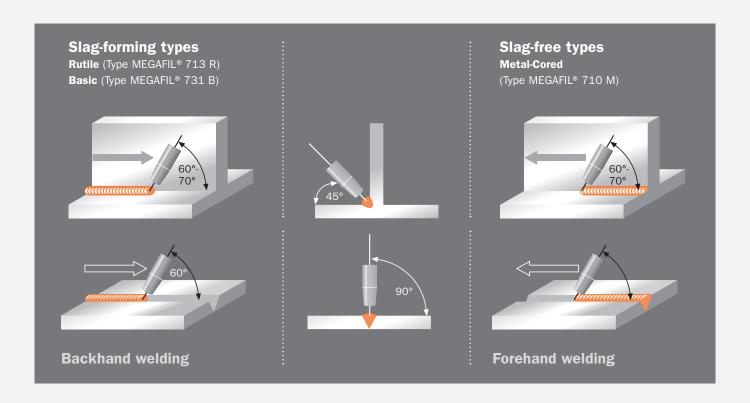
#### ALL WELD METAL CHEMISTRY (%) (typical values for mixed gas 82% Ar / 18% CO2)

consumable should follow the specific mechanical strength and toughness requirements.

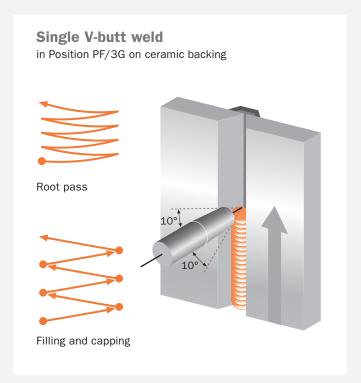
| Carbon (C)     | 0.07  | Nickel (Ni)     | -   |
|----------------|-------|-----------------|-----|
| Manganese (Mn) | 1.0   | Molybdenum (Mo) | 1.1 |
| Silicon (Si)   | 0.3   | Chromium (Cr)   | 2.3 |
| Sulphur (S)    | 0.015 |                 |     |
| Phosphorus (P) | 0.015 |                 |     |

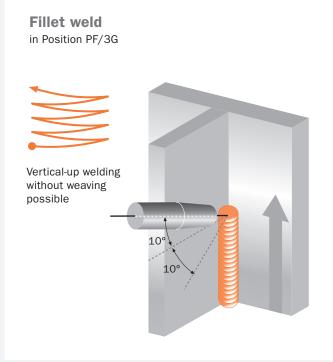
#### ALL WELD METAL MECHANICAL PROPERTIES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical tests                                                              | Typical values MPa (ksi) | ISO Specification MPa (ksi) |  |
|-------------------------------------------------------------------------------|--------------------------|-----------------------------|--|
| Tensile Strength Rm                                                           | 650 (94)                 | 620 - 760 (90 - 110)        |  |
| Yield strength Rp0.2                                                          | 560 (81)                 | > 540 (78)                  |  |
| Expansion A5         22%         18%                                          |                          |                             |  |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                          |                             |  |


#### CHARPY V-NOTCH IMPACT VALUES (for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Mechanical Tests                                                              | Typical values [J] (ft.lbf) | ISO Specification [J] (ft.lbf) |  |
|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|--|
| RT                                                                            | 130 (96)                    | > 47 (35)                      |  |
| -20° C                                                                        | 90 (66)                     | > 47 (35)                      |  |
| The specified values apply to the stress-relieved condition (690° C / 60 min) |                             |                                |  |


APPROVALS: TÜV


<sup>\*</sup>Measurement technique is the carrier gas method according to AWS and ISO

## **Torch Angle and Handling**



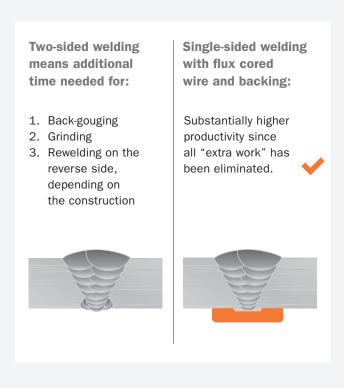
## Positional Welding with MEGAFIL® Rutile Flux-Cored Wires

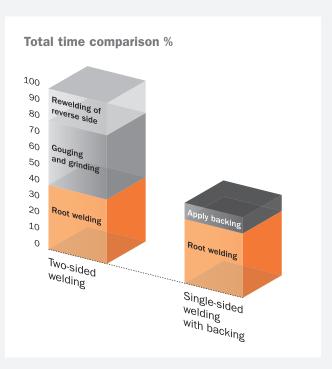


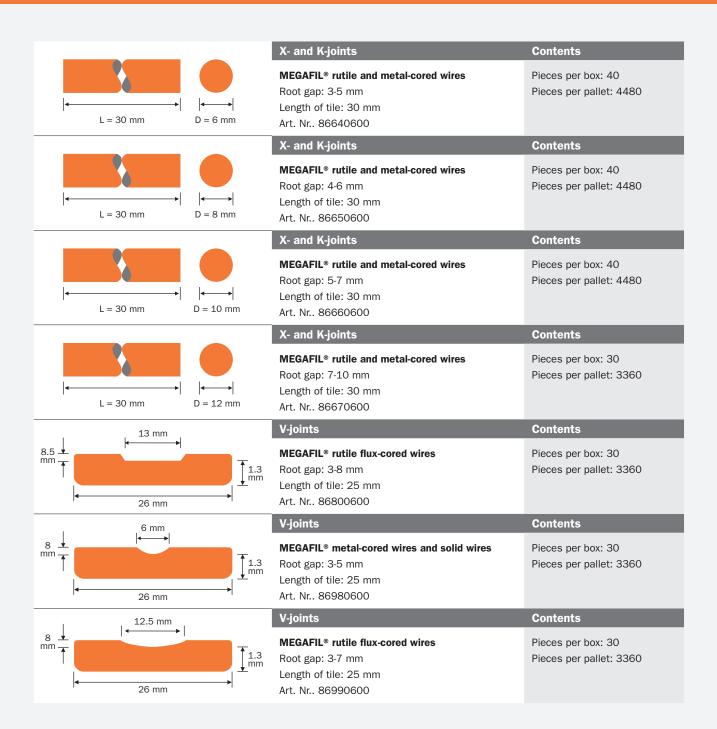


## **Use of Ceramic Backing Material**

Ceramic backing is used to provide weld metal support when welding from one side only. It is an extremely effective way to rationalise welding procedures, improve root pass quality and reduce production costs.

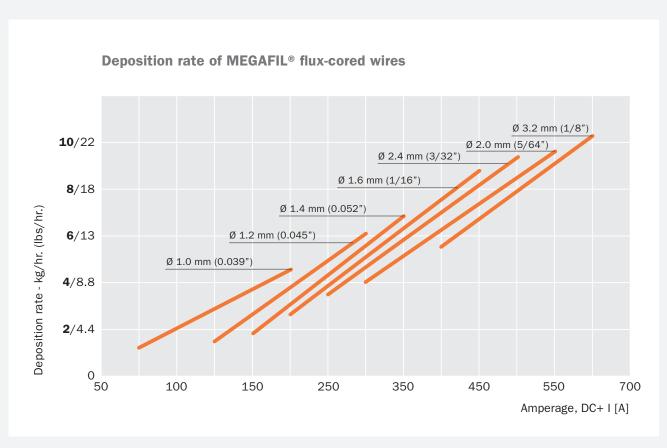

### **Reduced production costs**

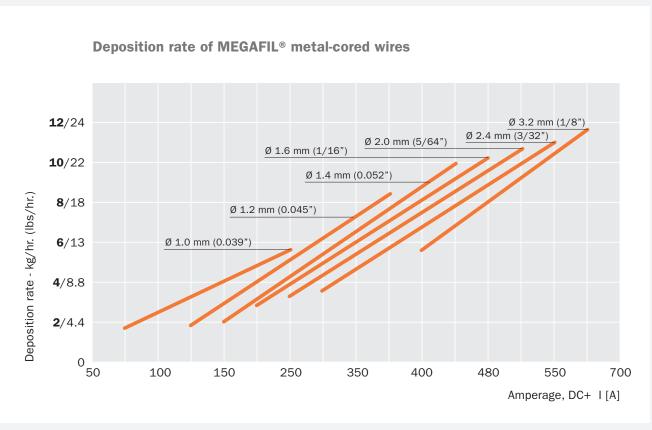

- Eliminates the need for back-gouging, grinding and weld sealing operations at the reverse side of the joint.
- No turning of heavy sections.
- Increased productivity when welding root runs in PA/1G, PC/2G and PF/3G positions.
- Simpler joint preparation and reduced set-up time, due to greater root gap tolerances.


### Improved quality

- Smooth, even root bead with slightly convex profile and excellent blend-in with base material.
- Ceramic material does not contain any moisture and produces no fumes. Ideal for low-hydrogen applications.
- No pollution of working environment with noise and fume from gouging, grinding and weld sealing operations.








Overview of ITW Welding ceramic backing materials. All are grey ceramic backing on aluminium adhesive tape. Length per piece is 600 mm. Used for non- and low-alloyed steels and stainless steels.

## **Deposition Rate Flux- and Metal-Cored Wires**





# Welding Parameters / Welding Costs

| Comparison of welding economy of V weld in PF / 3G position                      |                       |                       |                              |               |            |                                                             |  |  |  |  |
|----------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------------|---------------|------------|-------------------------------------------------------------|--|--|--|--|
|                                                                                  |                       | MEGAFII               | L® <b>713</b> R              | SG2 / G3Si1   |            |                                                             |  |  |  |  |
| wire diameter                                                                    | Ø                     | 1.2                   | mm                           | 1.2           | mm         |                                                             |  |  |  |  |
| labour and overhead costs                                                        | L                     | 40                    | €/h                          | 40            | €/h        |                                                             |  |  |  |  |
| amperage                                                                         | I                     | 260                   | А                            | 170           | А          |                                                             |  |  |  |  |
| deposition rate                                                                  | А                     | 5.5                   | kg/h                         | 2.8           | kg/h       |                                                             |  |  |  |  |
| welding duty cycle                                                               | ED                    | 70                    | %                            | 70            | %          | α h                                                         |  |  |  |  |
| price of welding consumable                                                      | Zp                    | 3                     | €/kg*)                       | 1             | €/kg*)     | s h                                                         |  |  |  |  |
| weld metal recovery                                                              | E                     | 85                    | %                            | 95            | %          | 1 1 1                                                       |  |  |  |  |
| price of gas                                                                     | Gp                    | 0.006                 | €/I                          | 0.006         | €/I        | grooving out of cap pass                                    |  |  |  |  |
| gas volumetric flow rate                                                         | Gs                    | 12                    | l/min                        | 15            | l/min      |                                                             |  |  |  |  |
| gas consumtion = 60 x GS / Ax ED                                                 | Gv                    | 187.01                | L/kgSG                       | 459.184       | L/kgSG     |                                                             |  |  |  |  |
| gas costs = Gp x Gv                                                              | Gk                    | 1.12                  | €/kgSG                       | 2.76          | €/kgSG     |                                                             |  |  |  |  |
| welding costs = Zp / E x 100                                                     | Zk                    | 3.53                  | €/kgSG                       | 1.05          | €/kgSG     |                                                             |  |  |  |  |
| production costs = L / A x ED                                                    | Fk                    | 10.39                 | €/kgSG                       | 20.41         | €/kgSG     |                                                             |  |  |  |  |
| total costs = Fk +                                                               | Zk + Gk               | 15.04                 | €/kgSG                       | 24.22         | €/kgSG     |                                                             |  |  |  |  |
| sheet thickness s [mm] 20.0 $\times$ weld preparation angle $\alpha$ 50 $\times$ | weight of weld [kg/m] |                       | producti<br>per met<br>[kg/l |               |            | *) Price of welding consumable depending on supplied volume |  |  |  |  |
| gap width b [mm] 3.0 v root height h [mm] 1.0 v                                  | 1.987                 | 29                    | .75                          | 47.           | 90         |                                                             |  |  |  |  |
| weld reinforcement [mm] 2                                                        | quired wire           | e quantity            | [kg/mSN]                     | ]             |            |                                                             |  |  |  |  |
| cap oass (if necessary) 1.0                                                      | solid or m            | etal-cored wire* 2.06 |                              |               | 2.06       |                                                             |  |  |  |  |
| depth t [mm] 1                                                                   | rutile or b           | asic flux-c           | ored wire                    | *             | 2.25       |                                                             |  |  |  |  |
| width b2 [mm]                                                                    | *for flux-co          | red wire witl         | n slag 86%,                  | for solid and | metal-core | d wire 96% recovery are considered                          |  |  |  |  |

# **MEGAFIL®** Welding parameters - guidance values: metal-cored wires



### MEGAFIL® - metal-cored wire - Ø 1.0 mm; gas flow 12-18 l/min (25-38 cfh)

| ı        | Position     | Plate<br>thickness | Layer    | Amperage<br>[ A ] | Voltage<br>[V] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|--------------|--------------------|----------|-------------------|----------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | PA           |                    | 1 (Root) | 90 ± 10           | 14.5 ± 1       | 2.3                   | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1G           |                    | 2-n      | 220 ± 20          | 26 ± 1         | 10.7                  |                 | ilinanum .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | PC           |                    | 1 (Root) | 90 ± 10           | 14.5 ± 1       | 2.3                   | 3               | <b>Qualitation</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 2G           |                    | 2-n      | 220 ± 10          | 25 ± 1         | 10.7                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |              |                    | 1 (Root) | 90 ± 10           | 14.5 ± 1       | 2.3                   | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | PF<br>3G     |                    | 2        | 120 ± 10          | 14.5 ± 1       | 3.8                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |              |                    | 3-n      | 140 ± 20          | 15.5 ± 1       | 5.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |              |                    | 1 (Root) | 100 ± 10          | 14.5 ± 1       | 2.9                   | 2 (3)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | PE<br>4G     | weaving            | 2-n      | 120 ± 10          | 15 ± 1         | 3.8                   |                 | - Contraction of the Contraction |
|          |              | stringer<br>beads  | 2-n      | 200 ± 10          | 24 ± 1         | 9.5                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | noin 4 E nom | < 5 mm             |          | 100 ± 20          | 14.5 ± 1       | 2.9                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PA<br>1F | min 1.5 mm   | < 10 mm            |          | 220 ± 10          | 25 ± 1         | 10.7                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |              | > 10 mm            |          | 220 ± 20          | 26 ± 1         | 10.7                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | noin 4 E nom | < 5 mm             |          | 120 ± 20          | 15.5 ± 1       | 3.8                   |                 | -M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PB<br>2F | min 1.5 mm   | < 10 mm            |          | 220 ± 10          | 26 ± 1         | 10.7                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |              | > 10 mm            |          | 220 ± 20          | 26 ± 1         | 10.7                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PF       | single layer |                    |          | 100 ± 20          | 15.5 ± 1       | 2.9                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3F       | multi layer  |                    |          | 120 ± 20          | 15.5 ± 1       | 3.8                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PD       |              | < 5 mm             |          | 120 ± 20          | 15.5 ± 1       | 3.8                   |                 | <b>THE CONTRACT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4F       |              | > 5 mm             |          | 220 ± 10          | 25 ± 1         | 10.7                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **MEGAFIL®** Welding parameters - guidance values: metal-cored wires



MEGAFIL® - metal-cored wire - Ø 1.2 mm; gas flow 12-18 l/min (25-38 cfh)

| Р  | osition           | Plate<br>thickness | Layer    | Amperage<br>[ A ] | Voltage<br>[ V ] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|-------------------|--------------------|----------|-------------------|------------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | PA                |                    | 1 (Root) | 90 ± 10           | 14.5 ± 1         | 1.8                   | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | 1G                |                    | 2-n      | 240 ± 20          | 26 ± 1           | 7.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | PC                |                    | 1 (Root) | 90 ± 10           | 14.5 ± 1         | 1.8                   | 3               | Qualitation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | 2G                |                    | 2-n      | 230 ± 10          | 25 ± 1           | 6.7                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   |                    | 1 (Root) | 90 ± 10           | 14.5 ± 1         | 1.8                   | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | PF<br>3G          |                    | 2        | 110 ± 10          | 14.5 ± 1         | 2.2                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   |                    | 3-n      | 120 ± 20          | 15.5 ± 1         | 2.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   |                    | 1 (Root) | 100 ± 10          | 14.5 ± 1         | 2                     | 2 (3)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | PE<br>4G          | weaver             | 2-n      | 130 ± 10          | 15 ± 1           | 3                     |                 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                   | stringer<br>beads  | 2-n      | 220 + 10          | 25 + 1           | 6.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | min 1.5 mm        | < 5 mm             |          | 120 ± 20          | 14.5 ± 1         | 2.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PA | 111111 C.1 111111 | < 10 mm            |          | 220 ± 10          | 26 ± 1           | 6.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1F |                   | < 15 mm            |          | 240 ± 20          | 27 ± 1           | 7.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   | > 15 mm            |          | 300 ± 20          | 30 ± 1           | 9.5                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | min 1.5 mm        | < 5 mm             |          | 120 ± 10          | 15.5 ± 1         | 2.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PB | 11111 1.5 111111  | < 10 mm            |          | 220 ± 10          | 26 ± 1           | 6.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2F |                   | < 15 mm            |          | 240 ± 20          | 27 ± 1           | 7.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   | > 15 mm            |          | 300 ± 20          | 30 ± 1           | 9.5                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PF | single layer      |                    |          | 140 ± 20          | 15.5 ± 1         | 3.2                   |                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3F | multi layer       |                    |          | 160 ± 20          | 16.5 ± 1         | 3.8                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PD |                   | < 5 mm             |          | 160 ± 20          | 16.5 ± 1         | 3.8                   |                 | <b>THE STATE OF THE </b> |
| 4F |                   | > 5 mm             |          | 220 + 10          | 25 ± 1           | 6.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# **MEGAFIL®** Welding parameters - guidance values: metal-cored wires



## MEGAFIL® - metal-cored wire - Ø 1.6 mm; gas flow 12-18 l/min (25-38 cfh)

| F  | osition           | Plate<br>thickness | Layer    | Amperage<br>[ A ] | Voltage<br>[ V ] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|-------------------|--------------------|----------|-------------------|------------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | PA                |                    | 1 (Root) | 100 + 10          | 14.5 ± 1         | 1.1                   | 4 (3)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | 1G                |                    | 2-n      | 250 ± 20          | 26 ± 1           | 3.5                   |                 | illininini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | PC                |                    | 1 (Root) | 100 + 10          | 14.5 ± 1         | 1.1                   | 3 (4)           | <b>THE STATE OF THE </b> |
|    | 2G                |                    | 2-n      | 220 ± 10          | 25 ± 1           | 2.9                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   |                    | 1 (Root) | 100 + 10          | 14.5 ± 1         | 1.1                   | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | PF<br>3G          |                    | 2        | 120 ± 10          | 14.5 ± 1         | 1.4                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   |                    | 3-n      | 140 ± 20          | 15.5 ± 1         | 1.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   | < 5 mm             |          | 120 ± 20          | 14.5 ± 1         | 1.4                   |                 | <b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PA | min 1.5 mm        | < 10 mm            |          | 220 ± 10          | 26 ± 1           | 2.9                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1F |                   | < 15 mm            |          | 240 ± 20          | 27 ± 1           | 3.3                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                   | > 15 mm            |          | 300 ± 20          | 28 ± 1           | 4.2                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | min 1.5 mm        | < 5 mm             |          | 120 ± 10          | 15.5 ± 1         | 1.4                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PB | 111111 1.3 111111 | < 10 mm            |          | 220 ± 10          | 26 ± 1           | 2.9                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2F |                   | < 15 mm            |          | 240 ± 20          | 27 ± 1           | 3.3                   |                 | Time Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                   | > 15 mm            |          | 300 ± 20          | 28 ± 1           | 4.2                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PF | single layer      |                    |          | 120 ± 20          | 15.5 ± 1         | 1.4                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3F | multi layer       |                    |          | 140 ± 20          | 15.5 ± 1         | 1.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PD |                   | < 5 mm             |          | 140 ± 20          | 15.5 ± 1         | 1.6                   |                 | <b>Faderance</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4F |                   | > 5 mm             |          | 220 ± 10          | 25 ± 1           | 2.9                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# **MEGAFIL®** Welding parameters - guidance values: rutile flux-cored wires



MEGAFIL® - rutile flux-cored wire - Ø 1.0 mm; gas flow 12-18 l/min (25-38 cfh)

|    | Position           | Plate<br>thickness | Layer | Amperage<br>[ A ] | Voltage<br>[V] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|--------------------|--------------------|-------|-------------------|----------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | PA                 |                    | 1     | 180 ± 10          | 23 ± 1         | 8.6                   | 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 1G                 |                    | 2-n   | 220 ± 20          | 26 ± 1         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PC                 |                    | 1     | 160 ± 10          | 22 ± 1         | 7.1                   | 4               | Continuo de la continuo della contin |
|    | 2G                 |                    | 2-n   | 220 ± 20          | 24 ± 1         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                    | 110                | 1     | 160 ± 10          | 22 ± 1         | 7.1                   | 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PF                 | t < 12 mm          | 2-n   | 200 ± 20          | 25 ± 1         | 10.4                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 3G                 | 4. 40              | 1     | 180 ± 10          | 23 ± 1         | 8.6                   | 6               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                    | t > 12 mm          | 2-n   | 220 ± 20          | 26 ± 1         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PE                 |                    | 1     | 160 ± 10          | 22 ± 1         | 7.1                   | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 4G                 |                    | 2-n   | 220 ± 20          | 25 ± 1         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PA<br>1F           |                    | 1     | 220 ± 20          | 26 ± 2         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | - Strandard Lauren | t < 12 mm          |       | 200 ± 20          | 25 ± 1         | 10.4                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PB | single layer       | t > 12 mm          | 1     | 240 ± 20          | 26 ± 2         | 12.8                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2F | manulai lannan     |                    | 1     | 240 ± 20          | 27 ± 2         | 12.8                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | multi layer        |                    | 2-n   | 220 ± 20          | 25 ± 2         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | single laws        | t < 12 mm          |       | 160 ± 10          | 22 ± 1         | 7.1                   |                 | <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PF | single layer       | t > 12 mm          | 1     | 220 ± 20          | 25 ± 2         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3F | multi lavor        |                    | 1     | 180 ± 10          | 24 ± 1         | 8.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | multi layer        |                    | 2-n   | 220 ± 10          | 25 ± 1         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | single layer       | t < 12 mm          |       | 160 ± 10          | 22 ± 1         | 7.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PD | Single layer       | t > 12 mm          | 1     | 220 ± 20          | 25 ± 1         | 11.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4F | multi lavor        |                    | 1     | 160 ± 10          | 22 ± 1         | 7.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | multi layer        |                    | 2-n   | 200 ± 20          | 24 ± 1         | 10.4                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **MEGAFIL®** Welding parameters - guidance values: rutile flux-cored wires



## MEGAFIL® - rutile flux-cored wire - Ø 1.2 mm; gas flow 12-18 l/min (25-38 cfh)

|    | Position     | Plate<br>thickness | Layer | Amperage<br>[ A ] | Voltage<br>[V] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|--------------|--------------------|-------|-------------------|----------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | PA           |                    | 1     | 180 ± 10          | 23 ± 1         | 5.4                   | 6               | Statement of the statem |
|    | 1G           |                    | 2-n   | 250 ± 20          | 27 ± 1         | 9.6                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PC           |                    | 1     | 160 ± 10          | 22 ± 1         | 5                     | 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 2G           |                    | 2-n   | 210 ± 20          | 24 ± 1         | 6.3                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |              | 1.10               | 1     | 160 ± 10          | 22 ± 1         | 5                     | 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PF           | t < 12 mm          | 2-n   | 200 ± 20          | 25 ± 1         | 6.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 3G           | t > 12 mm          | 1     | 180 ± 10          | 23 ± 1         | 5.4                   | 6               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |              | ( > 12             | 2-n   | 240 ± 20          | 26 ± 1         | 9.3                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PE           |                    | 1     | 160 ± 10          | 22 ± 1         | 5                     | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 4G           |                    | 2-n   | 220 ± 10          | 25 ± 1         | 6.4                   |                 | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | PA<br>1F     |                    | 1     | 260 ± 20          | 27 ± 2         | 10.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | aingle laver | t < 12 mm          |       | 180 ± 20          | 24 ± 1         | 5.4                   |                 | ~ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| РВ | single layer | t > 12 mm          | 1     | 260 ± 20          | 27 ± 2         | 10.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2F | multi layer  |                    | 1     | 260 ± 20          | 27 ± 2         | 10.5                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | muiti iayei  |                    | 2-n   | 240 ± 20          | 26 ± 2         | 9.3                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | single layer | t < 12 mm          |       | 160 ± 10          | 22 ± 1         | 5                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PF | Jingic layer | t > 12 mm          | 1     | 200 ± 20          | 23 ± 2         | 6.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3F | multi layer  |                    | 1     | 160 ± 10          | 22 ± 1         | 5                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | maid layer   |                    | 2-n   | 230 ± 10          | 26 ± 1         | 8.5                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | single layer | t < 12 mm          |       | 160 ± 10          | 22 ± 1         | 5                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PD | onigio layer | t > 12 mm          | 1     | 200 ± 20          | 24 ± 1         | 6.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4F | multi layer  |                    | 1     | 160 ± 10          | 22 ± 1         | 5                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | India layer  |                    | 2-n   | 200 ± 20          | 24 ± 1         | 6.1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **MEGAFIL®** Welding parameters - guidance values: rutile flux-cored wires



MEGAFIL® - rutile flux-cored wire - Ø 1.6 mm; gas flow 12-18 l/min (25-38 cfh)

| ı  | Position      | Plate<br>thickness | Layer | Amperage<br>[ A ] | Voltage<br>[ V ] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|---------------|--------------------|-------|-------------------|------------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | PA            |                    | 1     | 180 ± 10          | 24 ± 1           | 2.7                   | 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 1G            |                    | 2-n   | 250 ± 20          | 26 ± 1           | 4                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PC            |                    | 1     | 160 ± 10          | 22 ± 1           | 2.4                   | 5               | Community of the Control of the Cont |
|    | 2G            |                    | 2-n   | 220 ± 10          | 24 ± 1           | 3.2                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |               | t < 20 mm          | 1     | 160 ± 10          | 22 ± 1           | 2.4                   | 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PF            | ( < 20 111111      | 2-n   | 220 ±10           | 25 ± 1           | 3.2                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 3G            | t > 20 mm          | 1     | 180 ± 10          | 23 ± 1           | 2.7                   | 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |               | t > 20 mm          | 2-n   | 240 ± 20          | 26 ± 1           | 3.8                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PA<br>1F      | t > 20 mm          | 1     | 300 ± 20          | 27 ± 2           | 5.3                   |                 | illuminus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | ainela lavae  | t < 20 mm          |       | 240 ± 20          | 26 ± 1           | 3.8                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PB | single layer  | t > 20 mm          | 1     | 280 ± 20          | 27 ± 2           | 4.9                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2F | multi lavor   |                    | 1     | 260 ± 20          | 27 ± 1           | 4.2                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | multi layer   |                    | 2-n   | 240 ± 20          | 26 ± 2           | 3.8                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | single laws   | t < 20 mm          |       | 180 ± 10          | 22 ± 1           | 2.7                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PF | single layer  | t > 20 mm          | 1     | 240 ± 20          | 24 ± 2           | 3.8                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3F | multi lavor   |                    | 1     | 160 ± 10          | 22 ± 1           | 2.4                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | multi layer   |                    | 2-n   | 220 ± 20          | 24 ± 1           | 3.2                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | single layer  | t < 20 mm          |       | 180 ± 10          | 22 ± 1           | 2.7                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PD | Siligic layer | t > 20 mm          | 1     | 220 ± 20          | 25 ± 1           | 3.2                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4F | multi lavor   |                    | 1     | 160 ± 10          | 22 ± 1           | 2.4                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | multi layer   |                    | 2-n   | 200 ± 20          | 23 ± 1           | 3                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **MEGAFIL®** Welding parameters - guidance values: basic flux-cored wires



### MEGAFIL® - basic flux-cored wire - Ø 1.0 mm; gas flow 12-18 l/min (25-38 cfh)

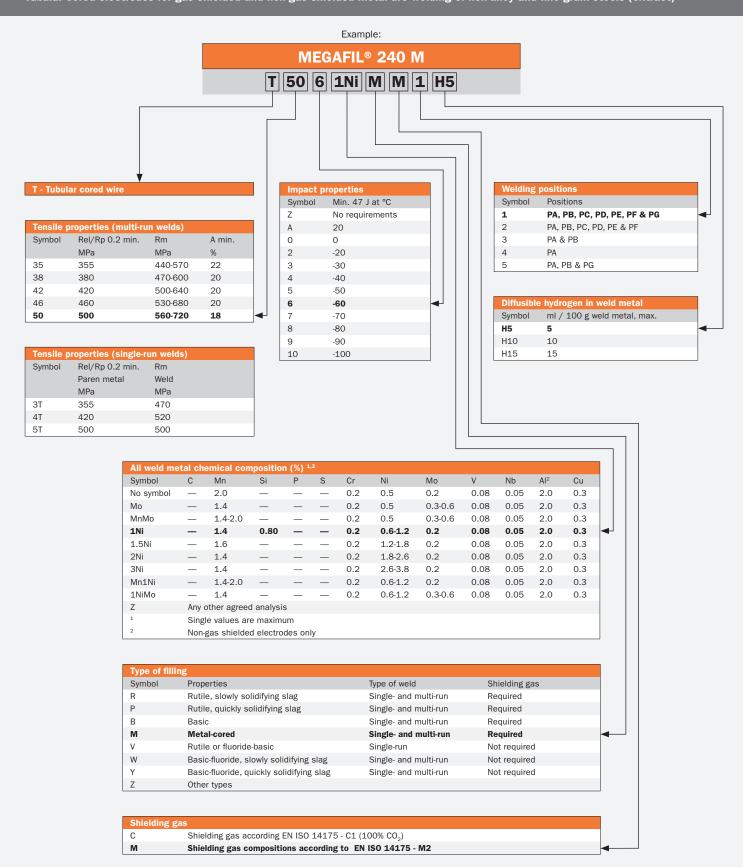
| Р  | osition      | Plate<br>thickness | Layer | Amperage<br>[ A ] | Voltage<br>[V] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol |
|----|--------------|--------------------|-------|-------------------|----------------|-----------------------|-----------------|--------|
|    | PA           |                    | 1     | 200 ± 10          | 23 ± 1         | 11.5                  | 4               |        |
|    | 1G           |                    | 2-n   | 220 ± 20          | 26 ± 1         | 13                    |                 |        |
| PC |              |                    | 1     | 180 ± 10          | 23 ± 1         | 10.3                  | 3               | шишиш  |
|    | 2G           |                    | 2-n   | 220 ± 20          | 25 ± 1         | 13                    |                 |        |
| PA | single layer | > 10 mm            | 1     | 240 ± 20          | 26 ± 2         | 14.1                  |                 |        |
| 1F | multi layer  |                    | 2-n   | 220 ± 20          | 25 ± 2         | 13                    |                 |        |
| PB | single layer | > 10 mm            | 1     | 240 ± 20          | 26 ± 2         | 14.1                  |                 |        |
| 2F | multi layer  |                    | 2-n   | 220 ± 20          | 25 ± 2         | 13                    |                 |        |

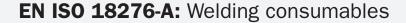
### MEGAFIL® - basic flux-cored wire - Ø 1.2 mm; gas flow 12-18 l/min (25-38 cfh)

| P  | osition      | Plate<br>thickness | Layer | Amperage<br>[ A ] | Voltage<br>[V] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol    |
|----|--------------|--------------------|-------|-------------------|----------------|-----------------------|-----------------|-----------|
|    | PA           |                    | 1     | 200 ± 10          | 23 ± 1         | 8.5                   | 4               |           |
|    | 1G           |                    | 2-n   | 220 ± 20          | 26 ± 2         | 9.8                   |                 |           |
|    | PC           |                    | 1     | 180 ± 10          | 23 ± 1         | 7.3                   | 3               | annanan . |
|    | 2G           |                    | 2-n   | 220 ± 20          | 25 ± 1         | 9                     |                 |           |
| PA | single layer | > 10 mm            | 1     | 250 ± 20          | 26 ± 2         | 10.5                  |                 |           |
| 1F | multi layer  |                    | 2-n   | 240 ± 20          | 25 ± 2         | 9.8                   |                 |           |
| PB | single layer | > 10 mm            | 1     | 240 ± 20          | 26 ± 2         | 9.8                   |                 |           |
| 2F | multi layer  |                    | 2-n   | 220 ± 20          | 25 ± 2         | 9                     |                 |           |

# **MEGAFIL®** Welding parameters - guidance values: basic flux-cored wires

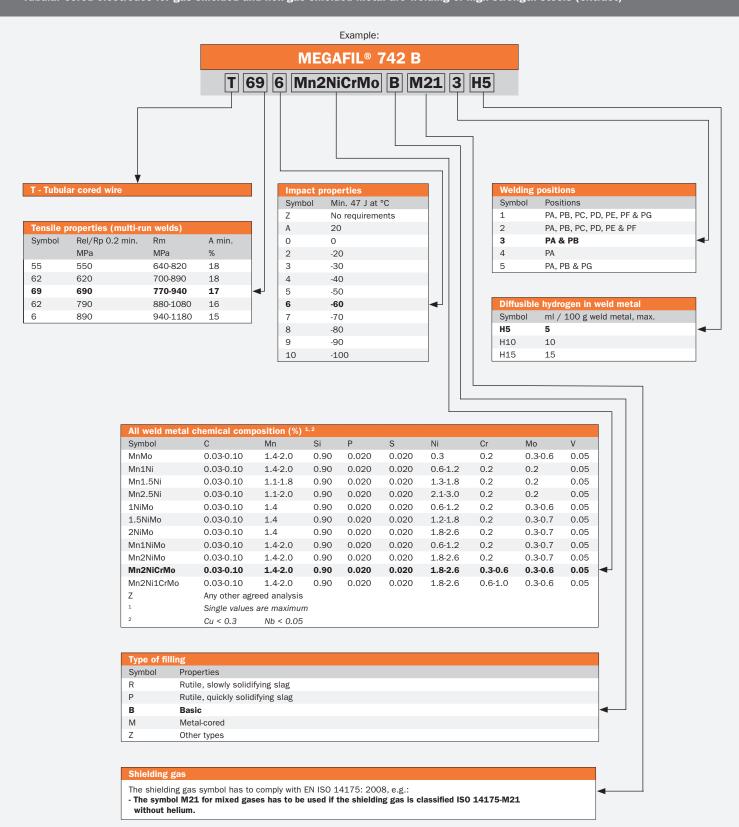



MEGAFIL® - basic flux-cored wire - Ø 1.6 mm; gas flow 12-18 l/min (25-38 cfh)


| P            | osition      | Plate<br>thickness | Layer | Amperage<br>[ A ] | Voltage<br>[V] | W Speed<br>[ m/ min ] | Gap<br>max (mm) | Symbol       |
|--------------|--------------|--------------------|-------|-------------------|----------------|-----------------------|-----------------|--------------|
| PA<br>1G     |              |                    | 1     | 200 ± 10          | 23 ± 1         | 3.9                   | 4               | <u>aunum</u> |
|              |              |                    | 2-n   | 250 ± 20          | 26 ± 1         | 5                     |                 |              |
| PA           | single layer | > 10 mm            | 1     | 300 ± 20          | 26 ± 2         | 6.2                   |                 |              |
| 1F           | multi layer  |                    | 2-n   | 240 ± 20          | 25 ± 2         | 4.7                   |                 |              |
| single layer |              | > 10 mm            | 1     | 250 ± 20          | 26 ± 1         | 5                     |                 |              |
| 2F           | multi layer  |                    | 2-n   | 220 ± 20          | 25 ± 2         | 4.2                   |                 |              |





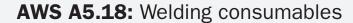

Tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of non-alloy and fine grain steels (extract)





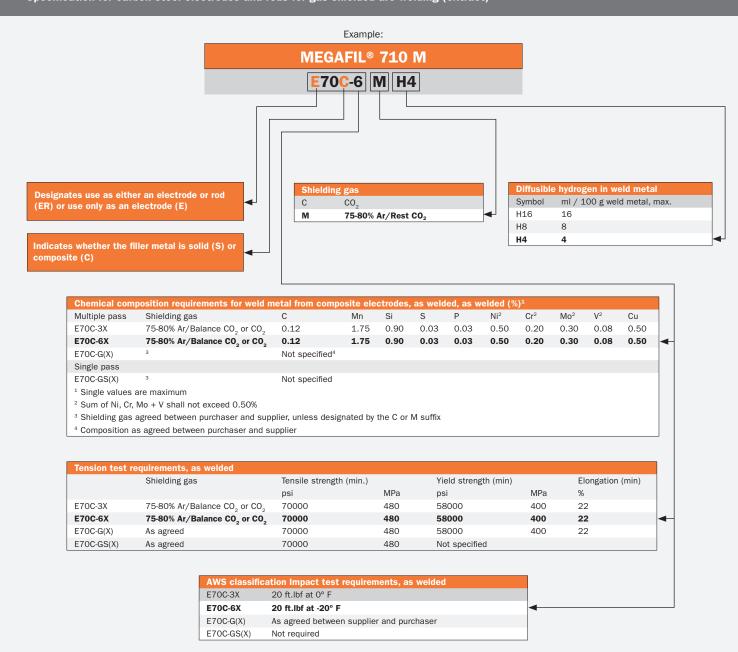


Tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of high strength steels (extract)





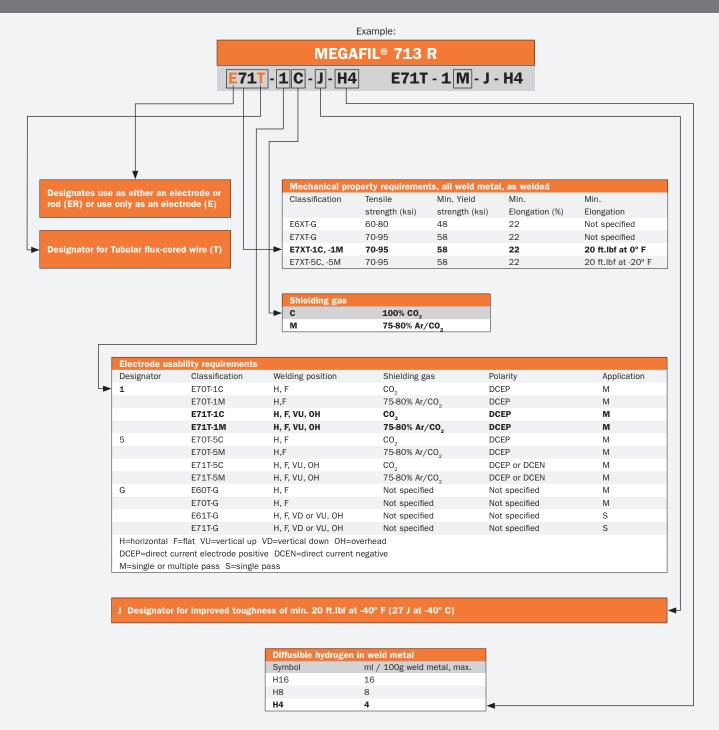




Tubular cored electrodes for gas shielded metal arc welding of creep resisting steels (extract)





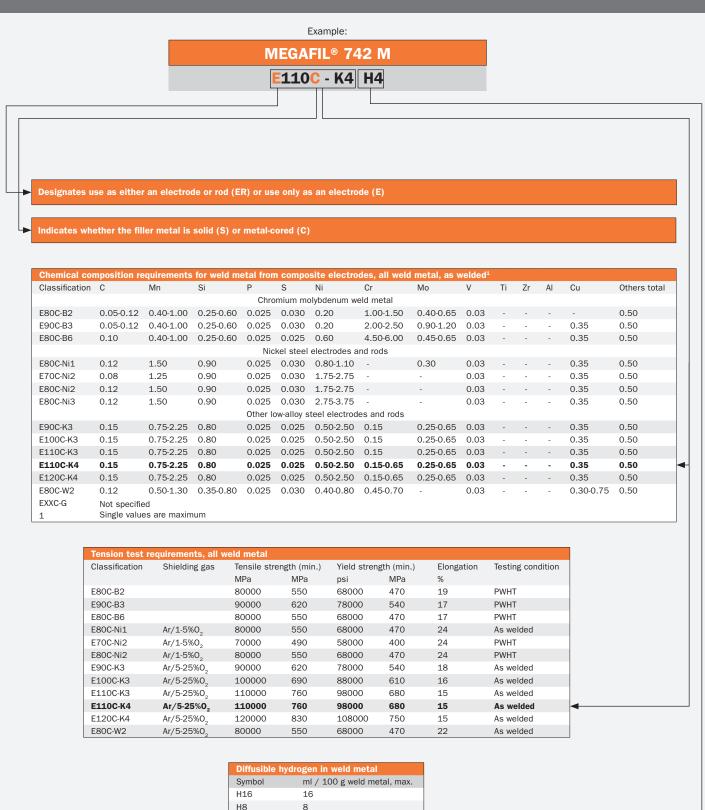



Specification for carbon steel electrodes and rods for gas shielded arc welding (extract)





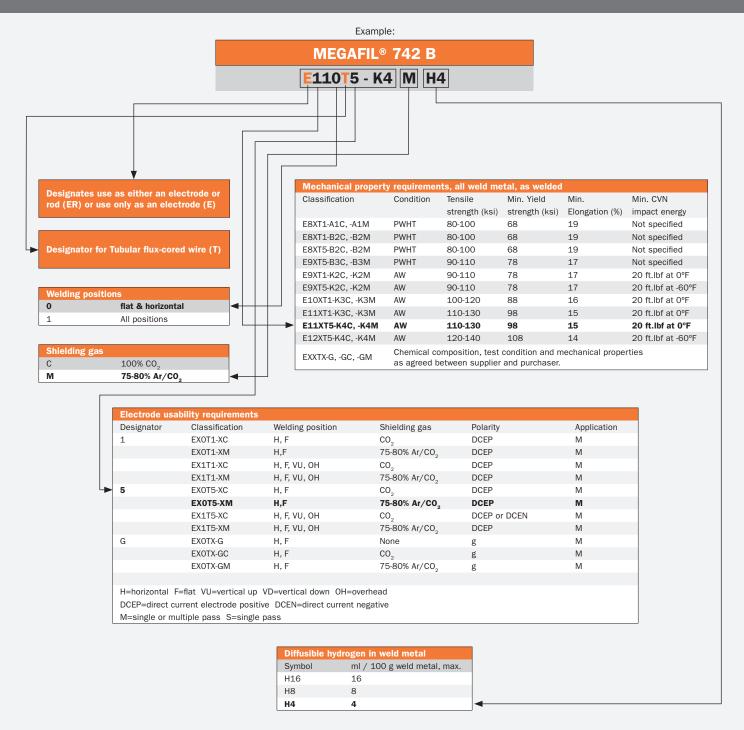



Specification for carbon steel electrodes for flux-cored arc welding (extract)



## AWS A5.28: Welding consumables

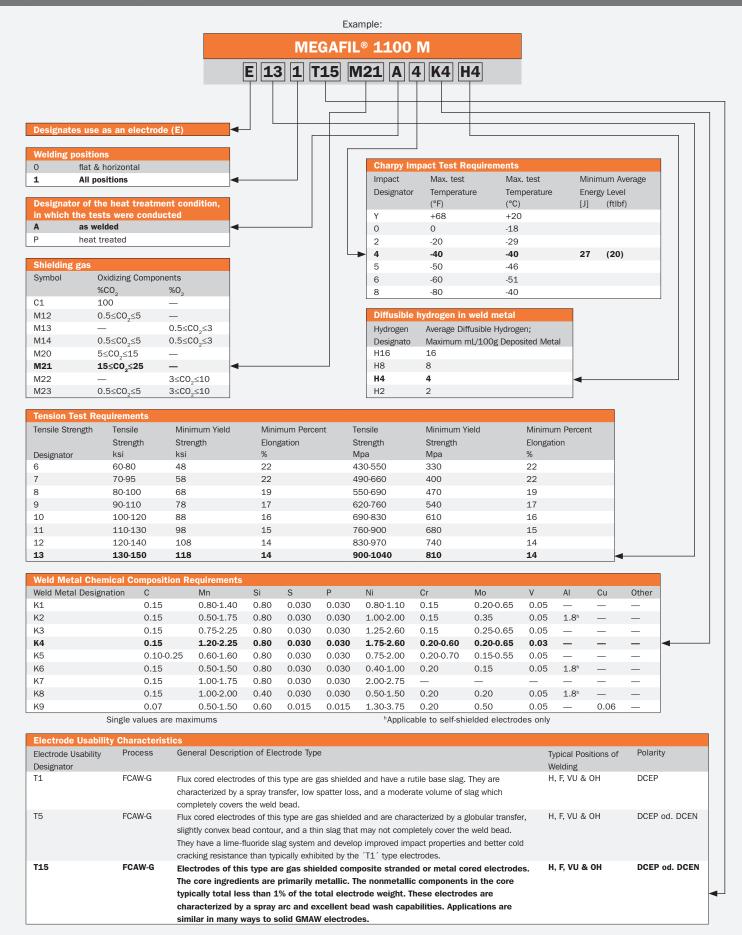



Specification for low-alloy steel electrodes and rods for gas shielded arc welding (extract)








Specification for low alloy steel electrodes for flux cored arc welding (extract)



## AWS A5.36: Welding consumables



Specification for carbon and low-alloy steel flux cored electrodes for flux cored arc welding and metal cored electrodes for gas metal arc welding (extract)



# Hardfacing



## **MEGAFIL® A 220 M**



EN ISO 14700: T Fe9 WELDING POSITIONS:



### FEATURES BENEFITS APPLICATIONS

- Well suited for wear resisting parts subject to impact and shock
- The weld metal characteristics are similar to manganese hard alloy
- · Good reignition characteristics
- · Virtually no slag coverage
- · Smooth arc characteristic

- · Machinable weld metal
- · Hardening possible
- · No re-drying
- Suitable for robot applications
- Automatic and mechanized welding
- · Railroad frogs
- · Transport rollers and wheels
- Rope pulleys
- · Wear parts of track vehicles

WIRE TYPE Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Gas flow 12-18 I/min

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

**STANDARD DIAMETERS** Ø 1.6 mm (1/16")

**RE-DRYING** Not required due to seamless wire design

STORAGE The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)      | 0.6  | Nickel (Ni) | 0.2 |
|-----------------|------|-------------|-----|
| Manganese (Mn)  | 14.5 |             |     |
| Silicon (Si)    | 0.6  |             |     |
| Chromium (Cr)   | 3.8  |             |     |
| Molybdenum (Mo) | -    |             |     |

| Hardness Rockwell (HRC) | 20 - 30 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## MEGAFIL® A 730 M



EN ISO 14700: T Fe1 WELDING POSITIONS:



### FEATURES BENEFITS

- Well suited for wear resisting parts subject to impact
- Good reignition characteristics
- Virtually no slag coverage
- · Smooth arc characteristic

- · Machinable weld metal
- · Hardening possible
- · No re-drying
- · Suitable for robot applications
- · Automatic and mechanized welding
- · Railroad frogs

**APPLICATIONS** 

- · Transport rollers and wheels
- Rope pulleys
- · Wear parts of track vehicles

WIRE TYPE Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Gas flow 12-18 l/min

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

**STANDARD DIAMETERS** Ø 1.2 mm (0.045")

**RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

### WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)      | 0.22 | Nickel (Ni) | - |
|-----------------|------|-------------|---|
| Manganese (Mn)  | 1.5  |             |   |
| Silicon (Si)    | 0.6  |             |   |
| Chromium (Cr)   | 1.3  |             |   |
| Molybdenum (Mo) | -    |             |   |

| Hardness Rockwell (HRC) | 25 - 35 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component |
|-------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## **MEGAFIL® A 740 M**



EN ISO 14700: T Z Fe2 **WELDING POSITIONS:** 







**APPLICATIONS FEATURES BENEFITS** 

- · Well suited for wear resisting parts subject to heavy impact
- Good reignition characteristics
- Virtually no slag coverage
- · Smooth arc characteristic

- · No buffer layer except on materials considered critical
- · Machinable weld metal
- · Hardening possible
- · No re-drying
- · Suitable for robot applications
- · Automatic and mechanized welding
- · Conveyors and transport surfaces
- Tires
- · Construction equipment

**WIRE TYPE** Gas shielded metal-cored wire

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Gas flow 12-18 I/min **SHIELDING GAS** 

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)      | 0.15 | Nickel (Ni) | - |
|-----------------|------|-------------|---|
| Manganese (Mn)  | 1.3  |             |   |
| Silicon (Si)    | 0.4  |             |   |
| Chromium (Cr)   | 5.0  |             |   |
| Molybdenum (Mo) | 0.5  |             |   |

| Hardness Rockwell (HRC) | 35 - 45 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## MEGAFIL® A 750 M



EN ISO 14700: T Z Fe2

### **WELDING POSITIONS:**







#### **FEATURES BENEFITS**

- · Well suited for wear resisting parts subject to heavy impact
- · Good reignition characteristics
- Virtually no slag coverage
- · Smooth arc characteristic

- · No buffer layer except on materials considered critical
- · Machinable weld metal
- · Hardening possible
- · No re-drying
- · Suitable for robot applications
- · Automatic and mechanized welding

**APPLICATIONS** 

- · Conveyors and transport surfaces
- · Tires
- · Construction equipment

**WIRE TYPE** Gas shielded metal-cored wire

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Gas flow 12-18 I/min **SHIELDING GAS** 

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 mm (0.045")

**RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)      | 0.3 | Nickel (Ni) | - |
|-----------------|-----|-------------|---|
| Manganese (Mn)  | 1.5 |             |   |
| Silicon (Si)    | 0.4 |             |   |
| Chromium (Cr)   | 5.5 |             |   |
| Molybdenum (Mo) | 0.5 |             |   |

| Hardness Rockwell (HRC) | 45 - 55 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## **MEGAFIL® A 760 M**



EN ISO 14700: T Fe2 **WELDING POSITIONS:** 







**FEATURES BENEFITS APPLICATIONS** 

- · Well suited for wear resisting parts subject to heavy impact
- Good reignition characteristics
- Virtually no slag coverage
- · Smooth arc characteristic

- · No buffer layer except on materials considered critical
- · Machinable weld metal
- · Hardening possible
- · No re-drying
- · Suitable for robot applications
- · Automatic and mechanized welding
- · Bucket and loader teeth
- Conveyors
- · Crusher jaws and cones

**WIRE TYPE** Gas shielded metal-cored wire

75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Gas flow 12-18 I/min **SHIELDING GAS** 

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS Ø 1.2 - 1.6 mm (0.045 - 1/16")

**RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)      | 0.5 | Nickel (Ni) | - |
|-----------------|-----|-------------|---|
| Manganese (Mn)  | 1.5 |             |   |
| Silicon (Si)    | 0.6 |             |   |
| Chromium (Cr)   | 6.0 |             |   |
| Molybdenum (Mo) | 0.5 |             |   |

| Hardness Rockwell (HRC) | 55 - 65 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## **MEGAFIL® A 760 B**



EN ISO 14700: T Fe2 WELDING POSITIONS:



#### FEATURES BENEFITS APPLICATIONS

- Well suited for wear resisting parts subject to heavy impact
- · Good reignition characteristics
- Virtually no slag coverage
- · Smooth arc characteristic

- · Schielding Gas C1 (100% CO2) possible
- No buffer layer except on materials considered critical
- · Machinable weld metal
- Hardening possible
- · No re-drying
- · Suitable for robot applications

- · Automatic and mechanized welding
- · Bucket and loader teeth
- Conveyors
- · Crusher jaws and cones

WIRE TYPE Gas shielded basic flux-cored wire

 $\textbf{SHIELDING GAS} \hspace{1.5cm} \textbf{75-85\% Argon (Ar)/Balance Carbon Dioxide (CO}_2); \hspace{0.1cm} \textbf{100\% CO}_2 \hspace{0.1cm} \textbf{possible; Gas flow 12-18 I/min}$ 

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

**STANDARD DIAMETERS** Ø 1.2 mm (0.045")

**RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)      | 0.5 | Nickel (Ni) | - |
|-----------------|-----|-------------|---|
| Manganese (Mn)  | 1.5 |             |   |
| Silicon (Si)    | 0.6 |             |   |
| Chromium (Cr)   | 6.0 |             |   |
| Molybdenum (Mo) | 0.5 |             |   |

| Hardness Rockwell (HRC) | 55 - 65 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## MEGAFIL® A 861 M



EN ISO 14700: T Fe8 WELDING POSITIONS:



#### FEATURES BENEFITS APPLICATIONS

- Superior hardness as a result of special carbides
- · Good reignition characteristics
- · Virtually no slag coverage
- · Smooth arc characteristic
- · Weld metal machinable only by grinding
- A buffer layer is recommended for critical materials or multi-layer build up
- Well suited for wear resisting parts subject to heavy impact and shock, as well as abrasion
- Surface remains free of cracks
- · No re-drying
- Suitable for robot applications
- · Welding without shielding gas possible
- · Automatic and mechanized welding
- · Bucket and loader teeth
- Conveyors
- · Crusher jaws and cones

WIRE TYPE Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Welding without shielding gas possible

Gas flow 12-18 I/min

TYPE OF CURRENT Direct Current Electrode Positive (DCEP)

**STANDARD DIAMETERS** Ø 1.6 mm (1/16")

**RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 1.3 | Nickel (Ni)     | - |
|----------------|-----|-----------------|---|
| Manganese (Mn) | 0.8 | Molybdenum (Mo) | - |
| Silicon (Si)   | 1.4 |                 |   |
| Chromium (Cr)  | 6.5 |                 |   |
| Niobium (Nb)   | 6.5 |                 |   |

| Hardness Rockwell (HRC) | 56 - 64 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# **MEGAFIL® A 863 M**



EN ISO 14700: T Z Fe14

#### **WELDING POSITIONS:**



#### FEATURES BENEFITS APPLICATIONS

- The weld metal characteristic and structure is similar to hard chrome alloys
- · Good reignition characteristics
- · Virtually no slag coverage
- · Smooth arc characteristic
- · Weld metal machinable only by grinding
- Sporadic cracks on the surface do not affect wear resistance
- Excellent resistance to abrasion from sand and minerals
- No re-drying
- Suitable for robot applications
- · Welding without shielding gas possible
- · Automatic and mechanized welding
- · Repair of mining and steel mill equipment
- Parts subject to wear in heavy engineering and agricultural industry
- Conveyors
- · Cement and concrete pumps

WIRE TYPE Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Welding without shielding gas possible

Gas flow 12-18 I/min

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

**STANDARD DIAMETERS** Ø 1.6 mm (1/16")

**RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 2.6 | Nickel (Ni)     | - |
|----------------|-----|-----------------|---|
| Manganese (Mn) | 0.9 | Molybdenum (Mo) | - |
| Silicon (Si)   | 0.6 |                 |   |
| Chromium (Cr)  | 17  |                 |   |
| Boron (B)      | 0.9 |                 |   |

| Hardness Rockwell (HRC) | 58 - 66 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## MEGAFIL® A 864 M



#### EN ISO 14700: T Fe13

#### **WELDING POSITIONS:**



#### FEATURES BENEFITS APPLICATIONS

- · Special boron based carbides
- · Good reignition characteristics
- · Virtually no slag coverage
- · Smooth arc characteristic
- · Weld metal machinable only by grinding
- Sporadic cracks on the surface do not affect wear resistance
- Excellent resistance to abrasion from sand and minerals
- · No re-drying
- · Suitable for robot applications
- · Welding without shielding gas possible
- · Automatic and mechanized welding
- · Repair of mining and steel mill equipment
- · Parts subject to wear in agricultural industry,
- Conveyors
- · Cement and concrete pumps

WIRE TYPE Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Welding without shielding gas possible

Gas flow 12-18 I/min

TYPE OF CURRENT
Direct Current Electrode Positive (DCEP)

STANDARD DIAMETERS
Ø 1.2 and 1.6 mm (0.045 and 1/16")

RE-DRYING
Not required due to seamless wire design

STORAGE The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

#### WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 0.5 | Nickel (Ni)     | 1.5 |
|----------------|-----|-----------------|-----|
| Manganese (Mn) | 1.1 | Molybdenum (Mo) | -   |
| Silicon (Si)   | 0.3 |                 |     |
| Chromium (Cr)  | 0.3 |                 |     |
| Boron (B)      | 4.8 |                 |     |

| Hardness Rockwell (HRC) | 60 - 68 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# **MEGAFIL® A 867 M**



EN ISO 14700: T Z Fe13

#### **WELDING POSITIONS:**



FEATURES BENEFITS APPLICATIONS

- Microstructure consiting of special boron based carbides in combination with Chromium carbides
- · Good reignition characteristics
- · Virtually no slag coverage
- · Smooth arc characteristic
- · Weld metal machinable only by grinding
- Sporadic cracks on the surface do not affect wear resistance
- Excellent resistance to abrasion from sand and minerals
- No re-drying
- Suitable for robot applications
- Welding without shielding gas possible
- · Automatic and mechanized welding
- · Repair of mining and steel mill equipment
- · Parts subject to wear in agricultural industry,
- · Conveyors
- · Cement and concrete pumps

WIRE TYPE Gas shielded metal-cored wire

SHIELDING GAS 75-85% Argon (Ar)/Balance Carbon Dioxide (CO<sub>2</sub>); Welding without shielding gas possible

Gas flow 12-18 I/min

**TYPE OF CURRENT** Direct Current Electrode Positive (DCEP)

**STANDARD DIAMETERS** Ø 1.6 mm (1/16")

**RE-DRYING** Not required due to seamless wire design

**STORAGE** The same conditions as for solid wire. Product should be stored in a dry, enclosed environment,

in its original undamaged packaging

WELD METAL ANALYSIS (%) (typical values for mixed gas 82% Ar / 18% CO<sub>2</sub>)

| Carbon (C)     | 1.8 | Nickel (Ni)     | - |
|----------------|-----|-----------------|---|
| Manganese (Mn) | 0.8 | Molybdenum (Mo) | - |
| Silicon (Si)   | 0.6 |                 |   |
| Chromium (Cr)  | 8.1 |                 |   |
| Boron (B)      | 4.2 |                 |   |

| Hardness Rockwell (HRC) | 62 - 70 | The achieved hardness as well as the structure of the hardfacing depends on (among others): Base material, welding parameters, working and interpass temperature, heating up, cooling down, number of layers, hardfacing methods and shape of component. |
|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### 1. What is meant by the term "Build-up Welding"?

Build up welding is used when the surface of vulnerable engine parts is damaged by abrasion wear, corrosion or heat.

### **Distinction according to standard:**

**<u>Build up:</u>** Is the addition of new material or the replacement of the original worn material. The build up

material is chosen in accordance to the application demands. The characteristics are usually

similar to the base material.

**Cladding:** As a result of cladding it is possible to modify the surface properties to enhance the corrosion

resistance and or to prevent water.

### 2. Surfacing when and where?

New ConstructionRepairEconomicsEconomicsQualitySheduleAlloy PropertiesServiceability

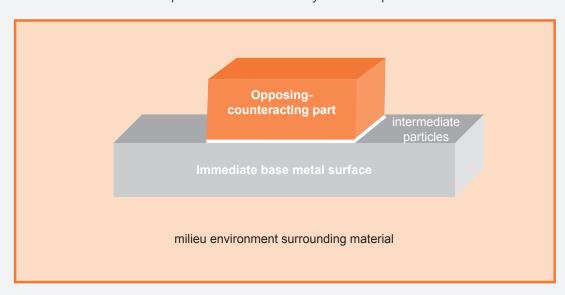
### 3. What does "wear" mean?

**Definition:** Wear is the accelerated loss of surface material due to one or more of the following:

**Galling:** Adhesion or cohesion of localized areas of two bearing surfaces of metal, followed by tearing

out of small fragments from one or the other or the surfaces when they are separated.

Abrasion: Material loss due to frictonal stress such as abrasive solids sliding, rolling or rubbing again a


surface.

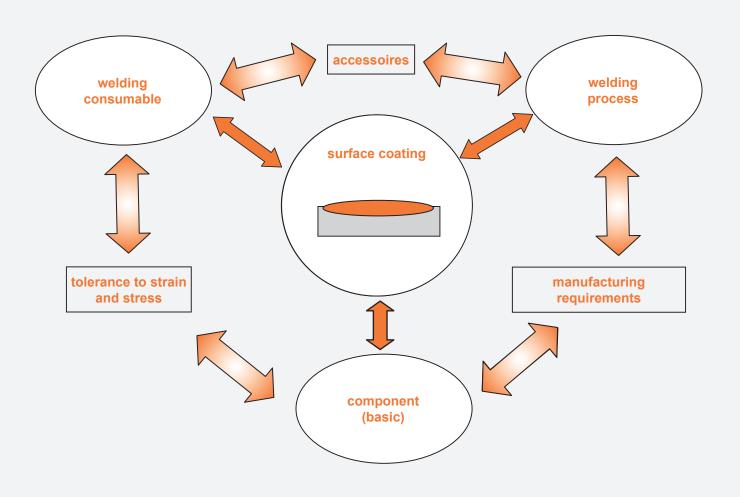
**Cracking:** Wear resulting from fatigue caused by strain and stress.

**TRIBO** mechanical

reaction: Result of corrosion.

### Components of the TRIBO - System wear process




# 4. Practical Examples of TRIBO - Systems:

| System structure                           | Type of wear         | Application              | Symbol<br>EN 14700                             |
|--------------------------------------------|----------------------|--------------------------|------------------------------------------------|
| Metal to metal wear                        | Abrasion             | Rails, chutes            | Fe1, Fe2, Fe3, Cu1                             |
| Rigid to friction                          | Import               | Forging hammers          | Fe9, F10, Al1, Ni2, Ni4                        |
| Edge wear<br>Mixing wear                   | Impact               | Dumper handle, cam shaft | Fe1, Fe2, Fe3                                  |
|                                            |                      | Rail car wheels, frogs   | Fe9, Fe10                                      |
|                                            | Rotational Rolling   | Drive wheels             | Fe1, Fe2, Fe3, Fe9                             |
|                                            |                      | Train tracks             | Fe1, Fe9, Fe10                                 |
|                                            |                      | Continous cat roller     | Fe7                                            |
|                                            | Roll-compressional   | Mill roller              | Fe3, Fe6, Fe7, Fe8                             |
|                                            | High - temp          | Cable rolls              | Fe3                                            |
|                                            |                      | Forging dies             | Fe3, Fe4, Fe6, Fe8, Co1, Co2,<br>Co3, Ni2, Ni4 |
|                                            | Impact, fiction cold | Knives, shearer edges    | Fe4, Fe5, Fe8, Co1, Co2, Co3                   |
|                                            | Impact, friction hot | Hot cutting knives       | Fe4, Fe3, Co2, Ni2, Ni4                        |
|                                            | impaot, motion not   | Hole punchers            | Fe4, Fe3, Co2, Ni2, Ni4                        |
| Madal to gradel with grant and to          |                      | Stone crusher            | Fe6, Fe8, Fe9, Fe14                            |
| Metal to metal with particulate            |                      | Hammer mills             | Fe6, Fe8, Fe9                                  |
|                                            |                      | Hammer rails             | Fe6, Fe8, Fe9, Fe13, Fe14,<br>Fe15             |
|                                            | land and the section | Coal & Ore grinders      | Fe6, Fe8                                       |
|                                            | Impact - abrasion    | Grateing & grills        | Fe6, Fe8, Fe13, Fe14, Fe15,<br>Fe16            |
|                                            |                      | Coal crushers            | Fe13, Fe14, Fe15                               |
|                                            |                      | Wear plate               | Fe8, Fe13, Fe14, Fe15                          |
|                                            |                      | strike plate             | Fe13, Fe14, Fe15                               |
|                                            |                      | Plough share             | Fe15, Fe20, Ni20                               |
| Metal to particle with pressure and impact | Impact - abrasion    | Discharing table, chute  | Fe14, Fe15, Fe20, Ni20                         |
|                                            |                      | Wearing sheet            | Fe14, Fe15, Ni1, Ni2, Ni3, Ni4,<br>Ni20        |

# **5. Practical Examples of TRIBO - Systems:**

| System structure                                      | Type of wear              | Application                    | Symbol<br>EN 14700                                  |
|-------------------------------------------------------|---------------------------|--------------------------------|-----------------------------------------------------|
| Matalanasatalanasa                                    |                           | Extruders                      | Fe14, Fe15, Fe20, Ni1, Ni3,<br>Ni20, Co2, Co3, Cr1  |
| Metal to metal wear Particulates and Surface pressure |                           | Transport screws               | Fe14, Fe15, Fe20, Ni1, Ni3,<br>Ni20, Co2, Cr1       |
|                                                       |                           | Mixing plates                  | Fe15, Fe20, Ni20                                    |
|                                                       | Absocias                  | Shredder                       | Fe6, Fe2, Fe8                                       |
|                                                       | Abrasion                  | Plow blades                    | Fe2, Fe6, Fe8, Fe20, Ni20                           |
|                                                       |                           | Mixing paddles, Mixer walls    | Fe6, Fe8, Fe14, Fe20, Ni1, Ni3,<br>Ni20             |
|                                                       |                           | Grinders& components           | Fe6, Fe8, Fe14, Ni1, Ni3                            |
|                                                       |                           | Mill roller, Compression molds | Fe14                                                |
| Metal to particulate with gas                         |                           | Blast furnance vents           | Fe6, Fe7, Fe8                                       |
| ivietai to particulate with gas                       |                           | Charging furmacevents          | Fe6, Fe3, Fe8, (Fe16)                               |
| \_                                                    |                           | Coal & Ore grinders            | Fe15, Fe16                                          |
| 42.10                                                 | Particle abrasion T≥500°C | Grateing and grills            | Fe7, Co1, Co2                                       |
|                                                       |                           | Coal crushers                  | Fe10, Fe15, Fe16, Fe20, Ni1,<br>Ni2, Ni3, Ni4, Ni20 |
|                                                       |                           | Wear plate                     | Fe15, Fe16                                          |
|                                                       |                           | Fan, strike plate              | Fe14, Fe15, Fe20, Ni1, Ni3,<br>Ni20                 |
| Metal to particulate                                  |                           | Jet- pipe. wearing sheet       | Fe14, Fe15                                          |
| Pressure and impact                                   | Fluid wear                | Marine dredger sliding, slag   | Fe6, Fe8                                            |
|                                                       | Fluid erosion             | Hydraulic pump                 | Fe6, Fe7, Fe8, Ni1, Ni3                             |
|                                                       |                           | Mixer                          | Fe6, Fe7, Fe8                                       |
|                                                       | Corrosion with erosion    | Screw propeller                | Cu1                                                 |
|                                                       | Corrosion with erosion    | Hydraulic turbine              | Fe7, Cu1                                            |
| Motol to Swidit                                       | Correction acquitation    | Chemical apparatus             | Fe7, Fe11, Fe12                                     |
| Metal to fluidity                                     | Corrosion, cavitation     | Sealing surface                | Fe7, Co1, Co2, Co3                                  |

### 6. Selection criteria



### 7. The following 5 basic questions are helpful to choose:

Weldment Composition: It is a solid form (a metal for example), determined by physical form method, dimension

surface characteristics, hardness, microstructure, working temperature?

Oppsite medium: Is it a solid, fluid or a gas? Is it a solid form such as metal, mineral, wood or plastic, can be

determined by physical appearance?

Intermediate medium: Possibly hard particles (wear particles) fluid (abrasive) or gaseous?

Note: Minerals can be either an opposite or intermediate.

**Movement:** The effect can be determined by the type of wear (flow, rolling or impact) and the duration

(constant or movement) and the length of service (constant, variation, slow or fast).

**Stress:** Determined by the type of stress (stationary, rotational, impact, length of stress).

# **MEGAFIL®** Welding parameters - guidance values: metal-cored wires



MEGAFIL® A 220 M - metal-cored wire - Ø 1.6 mm; shielding gas 82% Ar - 18% CO<sub>2</sub>

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|
| PA       |                | 170               | 17             | 2.5                        | globular transfer           |
| PA       |                | 190               | 21             | 2.8                        | globular transfer           |
| PA       |                | 210               | 23             | 3.6                        | globular transfer           |
| PA       | 20             | 230               | 22-28          | 3.8                        | globular / spray            |
| PA       |                | 250               | 25-28          | 4.5                        | globular / spray            |
| PA       |                | 280               | 26-30          | 5                          | globular / spray            |
| PA       |                | 300               | 31-33          | 5.6                        | globular / spray            |

MEGAFIL® A 730 M, A 740 M, A 750 M, A 760 M - metal-cored wires - Ø 1.2 mm; shielding gas 82% Ar - 18%  $\rm CO_2$ 

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|
| PA/PC/PF |                | 80                | 14             | 1.7                        | short arc                   |
| PA/PC/PF |                | 100               | 15.1           | 2.2                        | short arc                   |
| PA/PC/PF |                | 120               | 15.4           | 2.9                        | short arc                   |
| PA/PC/PF |                | 140               | 16             | 3.5                        | globular transfer           |
| PA/PC/PF |                | 160               | 18.3           | 4.4                        | globular transfer           |
| PA       | 20             | 180               | 20.1           | 5.3                        | globular transfer           |
| PA       |                | 200               | 21.4           | 6.1                        | globular transfer           |
| PA       |                | 220               | 23-29          | 6.9                        | globular / spray            |
| PA       |                | 240               | 25-30          | 8.4                        | globular / spray            |
| PA       |                | 260               | 30             | 9.6                        | spray arc                   |
| PA       |                | 280               | 31             | 10.4                       | spray arc                   |
| PA       |                | 300               | 32             | 10.9                       | spray arc                   |

MEGAFIL® A 760 M - metal-cored wire - Ø 1.6 mm; shielding gas 82% Ar - 18% CO<sub>2</sub>

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |  |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|--|
| PA/PC/PF |                | 100               | 15.8           | 1.1                        | short arc                   |  |
| PA/PC/PF |                | 120               | 16             | 1.3                        | short arc                   |  |
| PA/PC/PF |                | 140               | 16.2           | 1.6                        | short arc                   |  |
| PA/PC/PF |                | 160               | 16.5           | 1.9                        | short arc                   |  |
| PA       |                | 180               | 16.7           | 2.3                        | short arc                   |  |
| PA       |                | 200               | 17             | 2.6                        | globular transfer           |  |
| PA       |                | 220               | 18-24          | 3                          | globular transfer           |  |
| PA       | 20             | 240               | 24-27.5        | 3.4                        | globular / spray            |  |
| PA       |                | 260               | 27.6           | 3.8                        | spray arc                   |  |
| PA       |                | 280               | 28             | 4.1                        | spray arc                   |  |
| PA       |                | 300               | 28.5           | 4.8                        | spray arc                   |  |
| PA       |                | 330               | 29             | 5.3                        | spray arc                   |  |
| PA       |                | 360               | 31             | 6.2                        | spray arc                   |  |
| PA       |                | 390               | 33             | 7                          | spray arc                   |  |
| PA       |                | 420               | 34             | 7.6                        | spray arc                   |  |

# **MEGAFIL®** Welding parameters - guidance values: basic flux-cored wires



MEGAFIL® A 760 B - basic flux-cored wire - Ø 1.2 mm; shielding gas 82% Ar - 18% CO,

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |  |  |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|--|--|
| PA       |                | 130               | 20             | 4.2                        | globular transfer           |  |  |
| PA       |                | 150               | 22             | 6                          | globular transfer           |  |  |
| PA       |                | 190               | 23             | 8                          | globular transfer           |  |  |
| PA       | 20             | 230               | 26             | 10                         | globular transfer           |  |  |
| PA       |                | 250               | 26-29          | 12                         | globular / spray            |  |  |
| PA       |                | 280               | 28-30          | 14                         | globular / spray            |  |  |
| PA       |                | 300               | 28-31          | 16                         | globular / spray            |  |  |

# **MEGAFIL®** Welding parameters - guidance values: 8 series – metal-cored



MEGAFIL® A 861 M - metal-cored wire - Ø 1.6 mm; shielding gas 82% Ar - 18% CO<sub>2</sub>

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |  |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|--|
| PA       |                | 160               | 18             | 2.3                        | globular transfer           |  |
| PA       |                | 180               | 18.5           | 2.6                        | globular transfer           |  |
| PA       |                | 200               | 22             | 3                          | globular transfer           |  |
| PA       | 20             | 220               | 22-23 3.4      |                            | globular transfer           |  |
| PA       |                | 240               | 24             | 3.9                        | globular transfer           |  |
| PA       |                | 260               | 29             | 4.2                        | spray arc                   |  |
| PA       |                | 280               | 31             | 4.6                        | spray arc                   |  |
| PA       |                | 300               | 31-32          | 5                          | spray arc                   |  |
| PA       |                | 350               | 33             | 6.5                        | spray arc                   |  |

### MEGAFIL® A 863 M - metal-cored wire - Ø 1.6 mm; shielding gas 82% Ar - 18% CO<sub>2</sub>

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |  |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|--|
| PA       |                | 160               | 16.5           | 2.5                        | globular transfer           |  |
| PA       |                | 190               | 18.5           | 3.2                        | globular transfer           |  |
| PA       |                | 220               | 22             | 4.1                        | globular transfer           |  |
| PA       | 20             | 240               | 24.5           | 4.5                        | globular transfer           |  |
| PA       | 20             | 260               | 27             | 4.9                        | globular transfer           |  |
| PA       | 300            |                   | 28             | 5.7                        | globular transfer           |  |
| PA       |                | 350               | 31             | 7.8                        | spray arc                   |  |
| PA       |                | 350               | 35             | 7.8                        | globular transfer           |  |

# **MEGAFIL®** Welding parameters - guidance values: 8 series – metal-cored

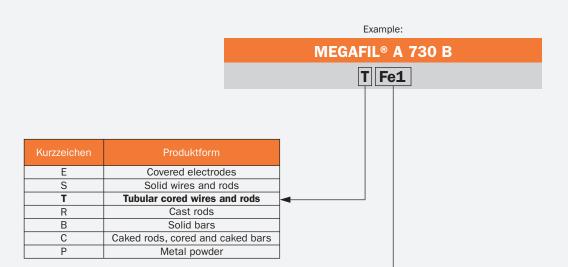


### MEGAFIL® A 864 M - metal-cored wire - Ø 1.2 mm; shielding gas 82% Ar - 18% CO<sub>2</sub>

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |  |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|--|
| PA       |                | 140               | 20 5.4 glo     |                            | globular transfer           |  |
| PA       |                | 160               | 22             | 6.2                        | globular transfer           |  |
| PA       |                | 180               | 23-24          | 7.2                        | globular transfer           |  |
| PA       | 18-20          | 200               | 24             | 8.1                        | globular transfer           |  |
| PA       |                | 220               | 25-26          | 9.7                        | globular transfer           |  |
| PA       |                | 240               | 26             | 10.5                       | globular transfer           |  |
| PA       |                | 240               | 34             | 10.5                       | spray arc                   |  |
| PA       |                | 260               | 27             | 12                         | globular transfer           |  |
| PA       |                | 260               | 36             | 12                         | spray arc                   |  |

### MEGAFIL® A 864 M - metal-cored wire - Ø 1.6 mm; shielding gas 82% Ar - 18% CO,

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |  |  |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|--|--|
| PA       |                | 160               | 18.5           | 2.6                        | short arc                   |  |  |
| PA       |                | 190               | 21             | 3.4                        | globular transfer           |  |  |
| PA       |                | 220               | 23             | 4.1                        | globular transfer           |  |  |
| PA       | 20             | 240               | 25             | 4.7                        | globular transfer           |  |  |
| PA       |                | 260               | 27             | 5.4                        | globular transfer           |  |  |
| PA       |                | 260               | 31             | 5.4                        | spray arc                   |  |  |
| PA       |                | 300               | 28             | 6.3                        | globular transfer           |  |  |
| PA       |                | 300               | 32             | 6.3                        | spray arc                   |  |  |


### MEGAFIL® A 867 M - metal-cored wire - Ø 1.6 mm; shielding gas 82% Ar - 18% CO<sub>2</sub>

| Position | Stickout<br>mm | Amperage<br>[ A ] | Voltage<br>[V] | Wire feeding<br>[ m/ min ] | Arc type /<br>transfer mode |  |  |
|----------|----------------|-------------------|----------------|----------------------------|-----------------------------|--|--|
| PA       |                | 140               | 18.2           | 2.4                        | short arc                   |  |  |
| PA       |                | 160               | 18.8           | 3                          | short arc                   |  |  |
| PA       |                | 180               | 20-21          | 3.6                        | globular transfer           |  |  |
| PA       | 20             | 200               | 23-24          | 4.3                        | globular transfer           |  |  |
| PA       |                | 240               | 26-33          | 5.6                        | globular / spray            |  |  |
| PA       |                | 280               | 33             | 6.5                        | spray arc                   |  |  |
| PA       |                | 350               | 30-35          | 9.4                        | globular / spray            |  |  |
| PA       | ]              | 400               | 34-37          | 11.5                       | globular / spray            |  |  |

### EN ISO 14700: Welding consumables



Welding consumables for hardfacing



|   | Allerations | A collection |           | Chemical composition (%) ° (m/m) |         |         |         |          |            |           |      |         |      |        |              |
|---|-------------|--------------|-----------|----------------------------------|---------|---------|---------|----------|------------|-----------|------|---------|------|--------|--------------|
|   | Alloy type  | Application  | С         | Cr                               | Ni      | Mn      | Mo      | W        | V          | Nb        | Fe   | Co      | Cu   | Al     | Others       |
| ▶ | Fe1         | р            | ≤ 0.4     | ≤ 3.5                            | ≤ 3     | ≤ 4.5   | ≤ 1     | ≤ 1      | ≤ 1        | _         | Rest | _       | _    | _      | Si, Ti       |
|   | Fe2         | p (g) (s)    | 0.4 - 1.5 | ≤ 7                              | ≤ 1     | ≤ 3     | ≤ 4     | ≤ 1      | ≤ 1        | _         | Rest | ≤ 1     | ≤ 1  | _      | Si, Ti       |
|   | Fe3         | s t          | 0.1 - 0.5 | 1 - 15                           | ≤ 5     | ≤ 3     | ≤ 5     | ≤ 10     | ≤ 1.5      | ≤ 3       | Rest | ≤ 13    | _    | _      | Si, Ti       |
|   | Fe4         | st(p)        | 0.2 - 1.5 | 2 - 10                           | ≤ 4     | ≤ 3     | ≤ 10    | ≤ 20     | ≤ 4        | _         | Rest | ≤ 5     | _    | _      | Si, Ti       |
|   | Fe5         | cpstw        | ≤ 0.5     | ≤ 0.1                            | 17 - 22 | ≤ 1     | 3 - 5   | _        | _          | _         | Rest | 10 - 15 | _    | ≤ 1    | Si, Ti       |
|   | Fe6         | gps          | ≤ 2.5     | ≤ 10                             | _       | ≤ 3     | ≤ 3     | _        | _          | ≤ 10      | Rest |         | _    | _      | Si, Ti       |
|   | Fe7         | cpt          | ≤ 0.2     | 11 - 30                          | ≤ 6     | ≤ 3     | ≤ 2     | _        | ≤ 1        | ≤ 1       | Rest | _       | _    | _      | Si, N        |
|   | Fe8         | gpt          | 0.2 - 2   | 5 - 20                           | _       | ≤ 3     | ≤ 5     | ≤ 2      | ≤ 2        | ≤ 10      | Rest |         | _    | _      | Si, Ti       |
|   | Fe9         | k p (n)      | ≤ 1.2     | ≤ 20                             | ≤ 5     | 9 - 20  | ≤ 2     | _        | ≤ 1        |           | Rest | _       | _    | _      | Si, Ti       |
|   | Fe10        | c k p z (n)  | ≤ 0.25    | 17 - 22                          | 7 - 11  | 3 - 8   | ≤ 1.5   | _        | _          | ≤ 1.5     | Rest |         | _    | _      | Si           |
|   | Fe11        | c n z        | ≤ 0.3     | 17 - 32                          | 8 - 20  | ≤ 3     | ≤ 4     | _        | _          | ≤ 1.5     | Rest | _       | _    | _      | Si, Cu       |
|   | Fe12        | c n (z)      | ≤ 0.12    | 17 - 27                          | 9 - 26  | ≤ 3     | ≤ 4     | _        | _          | ≤ 1.5     | Rest |         | _    | _      | Si           |
|   | Fe13        | g            | ≤ 1.5     | ≤ 7                              | ≤ 4     | ≤ 3     | ≤ 4     | _        | _          |           | Rest | _       | _    | _      | Si, B, Ti    |
|   | Fe14        | g (c)        | 1.5 - 4.5 | 25 - 40                          | ≤ 4     | ≤ 3     | ≤ 4     | _        | _          | _         | Rest | _       | _    | _      | Si           |
|   | Fe15        | g            | 3 - 7     | 20 - 40                          | ≤ 4     | ≤ 3     | ≤ 2     | _        | _          | ≤ 10      | Rest | _       | _    | _      | Si, B        |
|   | Fe16        | g z          | 4 - 8     | 10 - 40                          | _       | ≤ 3     | ≤ 10    | ≤ 10     | ≤ 10       | ≤ 10      | Rest | _       | _    | _      | Si, B        |
|   | Fe17        | ckpv         | ≤ 0.3     | ≤ 20                             | ≤ 5     | 8 - 20  | ≤ 2     | ≤ 0.3    | _          | _         | Rest | 10 - 15 |      | _      | Si           |
|   | Fe20        | cgtz         | _         | _                                | _       | _       | _       |          | _          | _         | Rest | _       | _    | _      | hard fillerb |
|   | Ni1         | cpt          | ≤ 1       | 15 - 30                          | Rest    | ≤ 1     | ≤ 6     | ≤ 2      | ≤ 1        | _         | ≤ 5  | _       |      | _      | Si, B        |
|   | Ni2         | ckptz        | ≤ 0.1     | 14 - 30                          | Rest    | ≤ 1.5   | 10 - 30 | ≤ 8      | ≤ 1        | ≤ 5       | ≤ 10 | ≤ 5     | _    | _      | Si, Ti       |
|   | Ni3         | cpt          | ≤ 1       | ≤ 15                             | Rest    | ≤ 1     | ≤ 6     | ≤ 2      | ≤ 1        |           | ≤ 5  | _       |      | _      | Si, B        |
|   | Ni4         | ckptz        | ≤ 0.1     | 1 - 20                           | Rest    | ≤ 1.5   | ≤ 30    | ≤ 8      | ≤ 1        | ≤ 5       | ≤ 3  | ≤ 15    | _    | ≤ 3    | Si, Ti       |
|   | Ni20        | cgtz         |           | _                                | Rest    |         | _       |          | _          | _         | _    | _       |      | _      | hard fillerb |
|   | Co1         | cktz         | ≤ 0.6     | 20 - 35                          | ≤ 10    | 0.1 - 2 | ≤ 10    | ≤ 15     | _          | ≤ 1       | ≤ 5  | _       | _    | _      | Si           |
|   | Co2         | t z (c) (s)  | 0.6 - 3   | 20 - 35                          | ≤ 4     | 0.1 - 2 | _       | 4 - 10   | _          |           | ≤ 5  | _       |      | _      | Si           |
|   | Co3         | t z (c) (s)  | 1 - 3     | 20 - 35                          | ≤ 4     | ≤ 2     | ≤ 1     | 6 - 15   | _          |           | ≤ 5  | _       | _    | _      | Si           |
|   | Cr1         | g n          | 1 - 5     | Rest                             | _       | ≤ 1     | _       | _        | 15 - 30    | _         | ≤ 5  | _       |      | _      | Si, B, Zr    |
|   | Cu1         | c (n)        |           | _                                | ≤ 6     | ≤ 2     | _       | _        | _          | _         | ≤ 5  | _       | Rest | 7 - 15 | Sn           |
|   | Cu2         | c (n)        | _         | _                                | ≤ 6     | ≤ 15    | _       | _        | _          | _         | ≤ 5  | _       | Rest | ≤ 9    | Sn           |
|   | Al1         | c n          | _         | _                                | 10 - 35 | ≤ 0.5   | _       | _        | _          | _         | _    | _       | ≤ 6  | Rest   | Si           |
|   | Z           | _            |           |                                  |         |         |         | any othe | r agreed a | analysisa |      |         |      |        |              |

- c: non-corrosive
- g: non-abrasive
- k: likely to strain hardening
- n: non-magnetizable
- p: impact resistant
- s: cuttable
- v: cavitation resistant
- t: creep resistant
- z: scale resistant
- w: temperhardened
- () evt. not applicable for all listed alloys
- $^{\rm a}$  alloys that are not listed in this table should be characterized similarly by putting the prefix "Z" in front

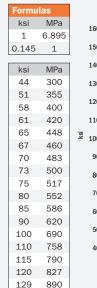
<sup>b</sup> crushed or spheric fused tungsten carbides or sintered tungsten carbides

° the listed single values are maximum values

### **Approval Certificates**



# **Approval Certificates**

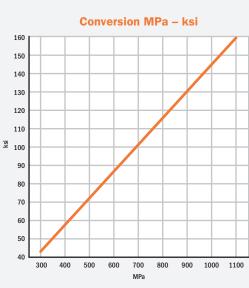



### **Conversion Charts**

### **Toughness**

#### Conversion J - ft-lbs ft-lbs J 1.356 220 200 20 180 30 160 37 40 140 47 120 50 60 100 70 80 80 60 100 120 140 160 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 180

### **Strength**




145

160

1000

1100



### **Temperature (Low)**

#### °F=°C \* 9/5+32 °C=(°F-32)\*5/9 °F °C -321 -196 -148 -100 -120 -84 -112 -80 -100 -73 -80 -62 -76 -60 -60 -51 -58 -50 -50 -46 -40 -40 -20 -29 -4 -20 0 -18 32 0 50 10 68 20

1

0.738

ft-lbs

15

22

27

30

35

37

44

52

59

66 74

89

103

118

133

148

162

177

192

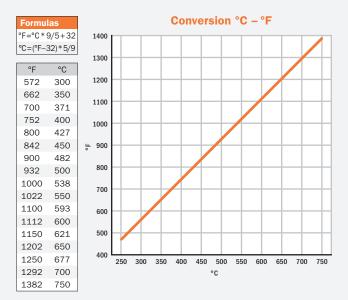
207

221

200


220

240


260

280

300



### **Temperature (High)**





ITW Welding GmbH Spechttal 1a DE - 67317 Altleiningen Germany

www.itw-welding.de

